Toolbox Questions and Posts Toolbox Questions and Posts Feed

These are Posts and Questions associated with the product, Toolbox

Hi MaplePrime-ers!

I've been using the Maple(17) toolbox in Matlab(2012b) to quickly enumerate systems of equations by: (i) solving them symbolically, (ii) using unapply to make them functions, (iii) then supplying the points (driver equations) to get the system solution.  Speed is a must, because there may be 3 million+ systems to solve.  Symbolics is also very important because I am evaluating topology, so the structure of the equations may change, and therefore a functional approach will not work.

I have had success (seen in the first code snippet).  I would like similiar behaviour in the second code snippet, but sometimes I get 'solutions may be lost' as an error message,  or 'Error, (in unapply) variables must be unique and of type name'

The system of equations include:  Linear equations, 5th order polynomials, absolute functions, and pieceiwse functions.

Here is code with a topology that solves:

#Interconnection Equations
eq2[1] := FD_T + EM2_T = 0;
eq2[2] := ICE_T + GEN_T = 0;
eq2[3] := EM2_A + GEN_A + BAT_A = 0;
eq2[4] := -FD_W + EM2_W = 0;
eq2[5] := -ICE_W + GEN_W = 0;
eq2[6] := -EM2_V + GEN_V = 0;
eq2[7] := -EM2_V + BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#ASSUMPTIONS
assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

#FINAL EQUATIONS

sys_eqs2 := convert(eq2,set) union {eq_c[1],eq_c[2],eq_c[3],eq_c[4],eq_c[5],eq_c[6]};

#Selecting which variables to solve for:

drivers2:= { ICE_T,ICE_W,FD_T,FD_W};
symvarnames2:=select(type,indets(convert(sys_eqs2,list)),name);
notdrivers2:=symvarnames2 minus drivers2;


#Symbolic solve

sol2:=solve(sys_eqs2,notdrivers2) assuming real:
symb_sol2:=unapply(sol2,convert(drivers2,list)):


#Enumerate (there will generally be about 40, not 6)

count := 0;
for i1 from 1 to 40 do
     for i2 from 1 to 40 do
          for i3 from 1 to 40 do
               for i4 from 1 to 40 do
                    count := count + 1;
                    solsol2(count) := symb_sol2(i1,i2,i3,i4);
               od;
          od;
     od;
od;
count;



This works great!  I would like simliar output in my second code snippet, but this time with more inputs to symb_sol.  However, if I try and change the interconnection equations a little, and add a piecewise function, and another driver... (differences in bold)

#Interconnection Equations
eq1[1] := FD_T+EM2_T = 0;
eq1[2] := ICE_T+GBb_T = 0;
eq1[3] := GEN_T+GBa_T = 0;
eq1[4] := EM2_A+GEN_A+BAT_A = 0;
eq1[5] := -FD_W+EM2_W = 0;
eq1[6] := -GEN_W+GBa_W = 0;
eq1[7] := -ICE_W+GBb_W = 0;
eq1[8] := -EM2_V+GEN_V = 0;
eq1[9] := -EM2_V+BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#GB
FiveSpeedGearbox_R := proc(ig)
local i ,eq;
i[1]:=3.32;
i[2]:=2;
i[3]:=1.36;
i[4]:=1.01;
i[5]:=0.82;
eq:= piecewise(ig=1,i[1],ig=2, i[2],ig=3,i[3],ig=4,i[4],ig=5,i[5],1);
return eq(ig);
end proc;


eq_c[7] := GBb_T = -1/GB_R * GBa_T;
eq_c[8] := GBb_W = GB_R * GBa_W;
eq_c[9] := GB_R = FiveSpeedGearbox_R(ig);

 

#System Equations
sys_eqs := convert(eq1,set) union convert(eq_c,set);

 

 #Solve for variables
symvarnames:=select(type,indets(convert(sys_eqs,list)),name);
drivers:= {ig, ICE_T,ICE_W,FD_T,FD_W};
not_drivers := symvarnames minus drivers;

#Assumptinons

assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

sol:=(solve(sys_eqs,not_drivers) assuming real);

symb_sol:=unapply(sol,convert(drivers,list)): ---> Error, (in unapply) variables must be unique and of type name

Subsequent parts don't work...

count := 0;
for i1 from 1 to 40 do
     for i2 from 1 to 40 do
          for i3 from 1 to 40 do
               for i4 from 1 to 40 do
                    for i5 from 1 to 40 do
                         count := count + 1;
                         solsol2(count) := symb_sol2(i1,i2,i3,i4,5);
                    od;
               od; 
          od;
     od;
od;
count;

While running the last line sol:, 1 of 2 things will happen, depending on the solver. Maple17 will take a long time (30+ minutes) to solve, then report nothing, or sol will solve, but will report "some solutions have been lost".

Afterwards, evaluating symb_sol(0,0,0,0,0) will return a viable solution (real values for each of the variables).  Whereas evaluating symb_sol(0,X,0,0,0), where X <> 0, will return and empty list [].

Does anyone know how to (i) speed up the symbolic solve time?  (ii) Return ALL of the solutions?

 

Thanks in advance for reading this.  I've really no idea why this isn't working.  I've also attached two worksheets with the code: noGB.mw   withGB.mw

 Adam

MapleSim 6.4 includes more powerful tools for creating custom components, performance enhancements, and enhancements to the model generators for Simulink® and FMI. 

We have also made important updates to the MapleSim Control Design Toolbox. This toolbox now offers a more complete set of algorithms for PID control, new commands for computing closed-loop transfer functions, and numerous improvements to existing commands. These enhancements allow engineers to design a greater variety of controllers and controller-observer systems while taking advantage of the greater flexibility and analysis options available through the use of symbolic parameters. 

See What’s New in MapleSim 6.4 and What’s New in the MapleSim Control Design Toolbox for details.

 

eithne

Data.xlsx

XY.mw

XYZ.mw

 

Hello,

I'm using the Global Optimization Toolbox to solve some examples and fit equations to a given data, finding "unknown" parameters. I generated the data on Excel, and I already know the values of these parameters.

The XY case is (there is no problem here, I just put as a example I follow):

> with(GlobalOptimization);
> with(plots);

> X := ExcelTools:-Import("F:\\Data.xlsx", "Plan1", "I5:I25");
> Y := ExcelTools:-Import("F:\\Data.xlsx", "Plan1", "J5:J25");

> XY := zip( (X, Y) -> [X, Y] , X, Y);
> fig1 := plot(XY, style = point, view = [.9 .. 3.1, 6 .. 40]);


> Model := A+B*x+C*x^2+D*cos(x)+E*exp(x):
> VarInterv := [A = 0 .. 10, B = 0 .. 10, C = -10 .. 10, D = 0 .. 10, E = 0 .. 10];

> ModelSubs := proc (x, val)

    subs({x = val}, Model)

    end proc;


> SqEr := expand(add((ModelSubs(x, X(i))-Y(i))^2, i = 1 .. 21));
> CoefList := GlobalSolve(SqEr, op(VarInterv), timelimit = 5000);

> Model := subs(CoefList[2], Model):

 

I could find the right values of A, B, C, D and E. 

 

My problem is in the XYZ case, where I don't know how to "write" the right instruction. My last attempt was:

> with(GlobalOptimization);
> with(plots);

> X := ExcelTools:-Import("F:\\Data.xlsx", "Plan1", "Q5:Q25"); X2 := convert(X, list);
> Y := ExcelTools:-Import("F:\\Data.xlsx", "Plan1", "R5:R25"); Y2 := convert(Y, list);
> Z := ExcelTools:-Import("F:\\Data.xlsx", "Plan1", "S5:S25"); Z2 := convert(Z, list);
> NElem := numelems(X);

> pointplot3d(X2, Y2, Z2, axes = normal, labels = ["X", "Y", "Z"], symbol = box, color = red);

 

> Model := A*x+B*y+C*sin(x*y)+D*exp(x/y);

> VarInterv := [A = 0 .. 10, B = 0 .. 10, C = 0 .. 10, D = 0 .. 10];

> ModelSubs:=proc({x,y},val)

subs({(x,y)=val},Model)

end proc:
Error, missing default value for option(s)

> SqEr := expand(add((ModelSubs(x, y, X(i), Y(i))-Z(i))^2, i = 1 .. NElem));
> CoefList := GlobalSolve(SqEr, op(Range), timelimit = 5000);
Error, (in GlobalOptimization:-GlobalSolve) finite bounds must be provided for all variables

 

My actual problem involves six equations, six parameters and four or five independent variables on each equation, but I alread developed a way to solve two or more equations simultaneously.

Thanks

Hi MaplePrimers,

I'm trying to solve a system of algebraic equations using 'solve' [float].  I'd prefer to use 'solve' over 'fsolve', as 'solve' solves my system in about 0.05s, whereas fsolve takes about 5 seconds.  I need to solve the system repeatedly at a different points, so time is important.  I don't know why there is such a large difference in time ... 

I have a few piecewise functions of order 3 to 5.  It solves fine with the other (piecewise) equations, but adding one piecewise function which gives me an error while trying to solve:

Error, (in RootOf) _Z occurs but is not the dependent variable.

I think this is due to solve finding multiple solutions.  Is there a way to limit solve to only real solutions?

Thanks in advance!

How would i go about integrating

(1)/(x^2+2)

 

I know it has to do something with arc tan but it doesnt match up completely what would I be able to do?

In this article I want to discuss the right way to store and build Maple code.

As mentioned in the Introducing the Maple IDE post, over 90 percent of the algorithms built into Maple are implemented using Maple language. The code of the algorithms is stored as Maple Libraries (.mla files).

As

Everyone knows that Maple combines a smart user interface with a highly sophisticated mathematical engine, where common tasks are performed quickly and seamlessly with point, click and drag operations. Of equal importance, however, is the fact that Maple is also backed by a comprehensive programming language. Also called "Maple", this language combines elements from procedural languages (like C), functional languages (like Lisp) as well as object oriented languages (like C++...

Hi, 

I've bought NAG C Library for my mac in order to use it in Maple.

However, it seems that Maple doesn't know where to search for it.
Indeed, it returns

Error, (in NAG:-h03abc) external linking: error loading external library libnagc_nag.dylib: dlopen(libnagc_nag.dylib, 129): image not found 

I've installed NAG C Library in usr/Library

 

Thank you very much for your help 

One of the most basic decisions a baseball manager has to make is how to arrange the batting order.  There are many heuristics and models for estimating the productivity of a given order.  My personal favourite is the use of simulation, but by far the most elegant solution from a mathematical perspective uses probability matrices and Markov chains.  An excellent treatment of this topic can be found in Dr. Joel S. Sokol's article,

We have just released a new, more powerful version of the Maple Global Optimization Toolbox.  

For this new release, Maplesoft has partnered with Noesis Solutions to develop a new version of the Maple Global Optimization Toolbox that is powered by Optimus technology. Optimus, from Noesis Solutions, is a platform for simulation process integration and design optimization that includes powerful optimization algorithms. This advanced technology is now available...

Hello,

I have a model in MapleSim for which I've generated the optimized C code using the connector toolbox, and I'd like to work with it directly. I was wondering if there is any documentation or examples of how to do this? I haven't been able to find any online.

Thanks! 

Hello everybody,

I' m trying to run completely The optmization template from a batch file (.bat) and wonder how to :

  1.  Make the buttons working automatically.
  2.  What  command should be used in a batch file to execute utterly a maple program
  3. What kind of script file can be perfect for Matlab / Maple.

The point is to run in parallel Matlab and Maple, using a script file(.bat) or another external script format.

i have a problem when i input this code in maple,..

how it can be error?

what the solve?

thanks for help me

the code:


> with(plots); with(DEtools); with(plottools); a := 0, 5; b := 0, 2; c := 0, 7; d := 0, 2; E := 0, 1;
                                    0, 5

Dear Readers,

Given an expression for e.g. x^n+ y^3.5, how to extract the symbolic/floating point exponent, I tried with degree method but it fails whenvever there is symbolic or floating point exponent. Is there any alternative ?

 

Thanks,

 

Regards, Satya

1 2 3 4 5 6 7 Page 1 of 8