Question: Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

April 08 2014 sharena2 15
Maple 12
0

i am trying to solve 6 ODE with boundary condition


restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


Download hydro.mw

restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


then i get this error

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

i dont know where i need to change after view it one by one..

Download hydro.mw

Please Wait...