Question: Transient boundaries in coupled PDEs 2.order

Hello everyone,

i'm trying to simulate a diffusion problem. It contains two connected regions in which a species is diffusing at different speeds. In one region (zeta) one boundary is set to be constant whereas in the other region (c) there is some oscillation at the boundary.The code i try to use is as follows:

sys1 := [diff(c(x, t), t) = gDiffusion*10^5*diff(c(x, t), x$2), diff(zeta(x, t), t) = KDiffusion*10^6*diff(zeta(x, t), x$2)]

pds := pdsolve(sys1, IBC, numeric, time = t, range = 0 .. 3000, spacestep = 3)

However the main problem are my boundary conditions:

IBC := {c(0, t) = 0, c(x > 0, 0) = 0, zeta(0, t) = .4, zeta(x > 0, 0) = .4, (D[1](c))(3000, t) = sin((1/100)*t), (D[1](zeta))(0, t) = 0}

Like this it principally works (however it is apparently ill-posed).

Now what i do like is that the two equations are coupled at x=2000 with the condition that c(2000,t)=zeta(2000,t). This however i dont seem to be able to implement.

I appreciate your comments


Please Wait...