Items tagged with academic academic Tagged Items Feed

Hello, I am new user of Maple and I have simple problem. I have different results after pasting and typing text. Can you help me?different signs

Dear All,

i am solving a system of pde with boundar conditons then i got this error...

Error, (in pdsolve/numeric/plot) unable to compute solution for tau>HFloat(0.0):

Thank.

jeffrey_fluid.mw

restart

with(plots):

``

Pr := .71;

.71

 

1

 

1

 

1

(1)

PDE := {(diff(theta(eta, tau), eta, eta))/Pr+f(eta, tau)*(diff(theta(eta, tau), eta))-theta(eta, tau)*(diff(f(eta, tau), eta))-a*(diff(theta(eta, tau), tau)) = 0, diff(f(eta, tau), eta, eta, eta)+f(eta, tau)*(diff(f(eta, tau), eta, eta))-(diff(f(eta, tau), eta))^2-a*(diff(f(eta, tau), eta, tau))-K*(a*(diff(f(eta, tau), eta, eta, eta, tau))+2*(diff(f(eta, tau), eta))*(diff(f(eta, tau), eta, eta, eta))-(diff(f(eta, tau), eta, eta))^2-f(eta, tau)*(diff(f(eta, tau), eta, eta, eta, eta)))+lambda*(1+epsilon*cos(Pi*tau))*theta(eta, tau) = 0};

{1.408450704*(diff(diff(theta(eta, tau), eta), eta))+f(eta, tau)*(diff(theta(eta, tau), eta))-theta(eta, tau)*(diff(f(eta, tau), eta))-(diff(theta(eta, tau), tau)) = 0, diff(diff(diff(f(eta, tau), eta), eta), eta)+f(eta, tau)*(diff(diff(f(eta, tau), eta), eta))-(diff(f(eta, tau), eta))^2-(diff(diff(f(eta, tau), eta), tau))-K*(diff(diff(diff(diff(f(eta, tau), eta), eta), eta), tau)+2*(diff(f(eta, tau), eta))*(diff(diff(diff(f(eta, tau), eta), eta), eta))-(diff(diff(f(eta, tau), eta), eta))^2-f(eta, tau)*(diff(diff(diff(diff(f(eta, tau), eta), eta), eta), eta)))+(1+cos(Pi*tau))*theta(eta, tau) = 0}

(2)

IBC := {f(0, tau) = 0, f(10, tau) = 0, f(eta, 0) = 0, theta(0, tau) = 1, theta(10, tau) = 0, theta(eta, 0) = 0, (D[1](f))(0, tau) = 1, (D[1](f))(10, tau) = 0};

{f(0, tau) = 0, f(10, tau) = 0, f(eta, 0) = 0, theta(0, tau) = 1, theta(10, tau) = 0, theta(eta, 0) = 0, (D[1](f))(0, tau) = 1, (D[1](f))(10, tau) = 0}

(3)

L := [1]

[1]

(4)

for i to 1 do K := L[i]; pds := pdsolve(PDE, IBC, numeric, spacestep = 1/100); p[i] := plots[display]([seq(pds:-plot(f, tau = 1, eta = 0 .. 1, legend = L[i]), j = 5)]) end do

1

 

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

 

Error, (in pdsolve/numeric/plot) unable to compute solution for tau>HFloat(0.0):
Newton iteration is not converging

 

display({p[1]})

Error, (in plots:-display) expecting plot structures but received: {p[1]}

 

``

 

Download jeffrey_fluid.mw

In this work we show you what to do with the programming of Embedded Components applied to graphics in the Cartesian plane; from the visualization of a point up to three-dimensional objects and also using the Maple language generare own interactive applications for touch screen technology in mobile devices techniques. Given that computers use multicore and designed algorithms that solve calculus problems with very good performance in time; this brings programming to more complex mathematical structures such as in the linear algebra, analytic geometry and advanced methods in numerical analysis. The graphics will show real-time results for the correct use of the parallel programming undertook to bear the procedural technique is well suited to the data structure, curves and surfaces. Interaction in a single graphical container allowing the teaching and / or research the rapid change of parameters; giving a quick interpretation of the results.

 

FAST_UNT_2015.pdf

Programming_Embedded_Components_for_Graphics_in_Maple.mw

Atte.

L.Araujo C.

Physics Pure

Computer Science

 

 

 

Hi everyone.

I have a question:

How I can simulate the amplification of the beam in a diode-pumped ytterbium-doped material?

I am work on thin disk laser resonators and its gain medium is Yb:YAG.

How can we plot theta=pi/6 in polar coordinates by maple13?

The William Lowell Putnam Mathematical Competition, often abbreviated to the Putnam Competition, is an annual mathematics competition for undergraduate college students enrolled at institutions of higher learning in the world (regardless of the students' nationalities). One can see some problems and answers here. I find it remarkable that a lot of these problems can be done with Maple. Here is a sample (The DirectSearch package should be downloaded from http://www.maplesoft.com/applications/view.aspx?SID=101333 and installed in your Maple.).

 

rsolve({a(k)=a(k-1)^2-2,a(0)=5/2},a)#2014,A-3

NULL

rs := unapply(rsolve({a(0) = 5/2, a(k) = a(k-1)^2-2}, a), k)

proc (k) options operator, arrow; 2*cosh(arccosh(5/4)*2^k) end proc

(1)

(2)

evalf(product(1-1/rs(k), k = 0 .. infinity))

.4285714286

(3)

identify(%)

3/7

(4)

sol := solve({1/x-1/(2*y) = 2*(-x^4+y^4), 1/x+1/(2*y) = (x^2+3*y^2)*(3*x^2+y^2)}, explicit)

sol[1]; evalf(sol)

{x = 1.122865470, y = .1228654698}, {x = -0.39087502e-2+.3661111372*I, y = -1.003908750+.3661111372*I}, {x = .6924760152-.5923802638*I, y = -.3075239848-.5923802638*I}, {x = .6924760152+.5923802638*I, y = -.3075239848+.5923802638*I}, {x = -0.39087502e-2-.3661111372*I, y = -1.003908750-.3661111372*I}, {x = .3469845126+.1168520057*I, y = 0.3796751170e-1+1.067908527*I}, {x = .7773739670+.4755282581*I, y = .4683569607-.4755282736*I}, {x = .2183569726+.2938926261*I, y = 1.027373941-.2938926802*I}, {x = .3469845126+1.067908522*I, y = 0.3796751830e-1+.1168520056*I}, {x = -.2120324818+.8862728900*I, y = .5969845187+.2984876419*I}, {x = -.3494002531+.8416393955*I, y = -.6584172547-.1094171332*I}, {x = -.2120324818+.2984876377*I, y = .5969845144+.8862728969*I}, {x = -.9084172475+.6600037635*I, y = -0.9940025307e-1+0.7221851120e-1*I}, {x = -.3494002531+.1094171208*I, y = -.6584172336-.8416394020*I}, {x = -.9084172475+0.7221851117e-1*I, y = -0.9940025050e-1+.6600037719*I}, {x = -.9084172475-0.7221851117e-1*I, y = -0.9940025050e-1-.6600037719*I}, {x = -.3494002531-.1094171208*I, y = -.6584172336+.8416394020*I}, {x = -.9084172475-.6600037635*I, y = -0.9940025307e-1-0.7221851120e-1*I}, {x = -.2120324818-.2984876377*I, y = .5969845144-.8862728969*I}, {x = -.3494002531-.8416393955*I, y = -.6584172547+.1094171332*I}, {x = -.2120324818-.8862728900*I, y = .5969845187-.2984876419*I}, {x = .3469845126-1.067908522*I, y = 0.3796751830e-1-.1168520056*I}, {x = .2183569726-.2938926261*I, y = 1.027373941+.2938926802*I}, {x = .7773739670-.4755282581*I, y = .4683569607+.4755282736*I}, {x = .3469845126-.1168520057*I, y = 0.3796751170e-1-1.067908527*I}

(5)

plots:-implicitplot([1/x+1/(2*y) = (x^2+3*y^2)*(3*x^2+y^2), 1/x-1/(2*y) = 2*(-x^4+y^4)], x = 0 .. 2, y = 0 .. 1, color = [red, blue], gridrefine = 4)

 

"http://kskedlaya.org/putnam-archive/  and https://en.wikipedia.org/wiki/William_Lowell_Putnam_Mathematical_Competition"

Re(convert(int(ln(x+1)/(x^2+1), x = 0 .. 1), polylog))

(1/8)*Pi*ln(2)

(6)

Im(convert(int(ln(x+1)/(x^2+1), x = 0 .. 1), polylog))

0

(7)

NULL

DirectSearch:-GlobalOptima(int(sqrt(x^4+(-y^2+y)^2), x = 0 .. y), {y = 0 .. 1}, maximize)

[.333333333333333, [y = HFloat(0.9999999999999992)], 96]

(8)

rsolve({T(0) = 2, T(1) = 3, T(2) = 6, T(n) = (n+4)*T(n-1)-4*n*T(n-2)+(4*n-8)*T(n-3)}, T)

GAMMA(n+1)+2^n

(9)

floor(10^20000/(10^100+3))

9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000080999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007289999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997813000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000656099999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999803170000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000059048999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982285300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005314409999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998405677000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000478296899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999856510930000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043046720999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987085983700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003874204889999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998837738533000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000348678440099999999999999999999999999999999999999999999999999999999999999999999999999999999999999999895396467970000000000000000000000000000000000000000000000000000000000000000000000000000000000000000031381059608999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990585682117300000000000000000000000000000000000000000000000000000000000000000000000000000000000000002824295364809999999999999999999999999999999999999999999999999999999999999999999999999999999999999999152711390557000000000000000000000000000000000000000000000000000000000000000000000000000000000000000254186582832899999999999999999999999999999999999999999999999999999999999999999999999999999999999999923744025150130000000000000000000000000000000000000000000000000000000000000000000000000000000000000022876792454960999999999999999999999999999999999999999999999999999999999999999999999999999999999999993136962263511700000000000000000000000000000000000000000000000000000000000000000000000000000000000002058911320946489999999999999999999999999999999999999999999999999999999999999999999999999999999999999382326603716053000000000000000000000000000000000000000000000000000000000000000000000000000000000000185302018885184099999999999999999999999999999999999999999999999999999999999999999999999999999999999944409394334444770000000000000000000000000000000000000000000000000000000000000000000000000000000000016677181699666568999999999999999999999999999999999999999999999999999999999999999999999999999999999994996845490100029300000000000000000000000000000000000000000000000000000000000000000000000000000000001500946352969991209999999999999999999999999999999999999999999999999999999999999999999999999999999999549716094109002637000000000000000000000000000000000000000000000000000000000000000000000000000000000135085171767299208899999999999999999999999999999999999999999999999999999999999999999999999999999999959474448469810237330000000000000000000000000000000000000000000000000000000000000000000000000000000012157665459056928800999999999999999999999999999999999999999999999999999999999999999999999999999999996352700362282921359700000000000000000000000000000000000000000000000000000000000000000000000000000001094189891315123592089999999999999999999999999999999999999999999999999999999999999999999999999999999671743032605462922373000000000000000000000000000000000000000000000000000000000000000000000000000000098477090218361123288099999999999999999999999999999999999999999999999999999999999999999999999999999970456872934491663013570000000000000000000000000000000000000000000000000000000000000000000000000000008862938119652501095928999999999999999999999999999999999999999999999999999999999999999999999999999997341118564104249671221300000000000000000000000000000000000000000000000000000000000000000000000000000797664430768725098633609999999999999999999999999999999999999999999999999999999999999999999999999999760700670769382470409917000000000000000000000000000000000000000000000000000000000000000000000000000071789798769185258877024899999999999999999999999999999999999999999999999999999999999999999999999999978463060369244422336892530000000000000000000000000000000000000000000000000000000000000000000000000006461081889226673298932240999999999999999999999999999999999999999999999999999999999999999999999999998061675433231998010320327700000000000000000000000000000000000000000000000000000000000000000000000000581497370030400596903901689999999999999999999999999999999999999999999999999999999999999999999999999825550788990879820928829493000000000000000000000000000000000000000000000000000000000000000000000000052334763302736053721351152099999999999999999999999999999999999999999999999999999999999999999999999984299571009179183883594654370000000000000000000000000000000000000000000000000000000000000000000000004710128697246244834921603688999999999999999999999999999999999999999999999999999999999999999999999998586961390826126549523518893300000000000000000000000000000000000000000000000000000000000000000000000423911582752162035142944332009999999999999999999999999999999999999999999999999999999999999999999999872826525174351389457116700397000000000000000000000000000000000000000000000000000000000000000000000038152042447694583162864989880899999999999999999999999999999999999999999999999999999999999999999999988554387265691625051140503035730000000000000000000000000000000000000000000000000000000000000000000003433683820292512484657849089280999999999999999999999999999999999999999999999999999999999999999999998969894853912246254602645273215700000000000000000000000000000000000000000000000000000000000000000000309031543826326123619206418035289999999999999999999999999999999999999999999999999999999999999999999907290536852102162914238074589413000000000000000000000000000000000000000000000000000000000000000000027812838944369351125728577623176099999999999999999999999999999999999999999999999999999999999999999991656148316689194662281426713047170000000000000000000000000000000000000000000000000000000000000000002503155504993241601315571986085848999999999999999999999999999999999999999999999999999999999999999999249053348502027519605328404174245300000000000000000000000000000000000000000000000000000000000000000225283995449391744118401478747726409999999999999999999999999999999999999999999999999999999999999999932414801365182476764479556375682077000000000000000000000000000000000000000000000000000000000000000020275559590445256970656133087295376899999999999999999999999999999999999999999999999999999999999999993917332122866422908803160073811386930000000000000000000000000000000000000000000000000000000000000001824800363140073127359051977856583920999999999999999999999999999999999999999999999999999999999999999452559891057978061792284406643024823700000000000000000000000000000000000000000000000000000000000000164232032682606581462314678007092552889999999999999999999999999999999999999999999999999999999999999950730390195218025561305596597872234133000000000000000000000000000000000000000000000000000000000000014780882941434592331608321020638329760099999999999999999999999999999999999999999999999999999999999995565735117569622300517503693808501071970000000000000000000000000000000000000000000000000000000000001330279464729113309844748891857449678408999999999999999999999999999999999999999999999999999999999999600916160581266007046575332442765096477300000000000000000000000000000000000000000000000000000000000119725151825620197886027400267170471056809999999999999999999999999999999999999999999999999999999999964082454452313940634191779919848858682957000000000000000000000000000000000000000000000000000000000010775263664305817809742466024045342395112899999999999999999999999999999999999999999999999999999999996767420900708254657077260192786397281466130000000000000000000000000000000000000000000000000000000000969773729787523602876821942164080815560160999999999999999999999999999999999999999999999999999999999709067881063742919136953417350775755331951700000000000000000000000000000000000000000000000000000000087279635680877124258913974794767273400414489999999999999999999999999999999999999999999999999999999973816109295736862722325807561569817979875653000000000000000000000000000000000000000000000000000000007855167211278941183302257731529054606037304099999999999999999999999999999999999999999999999999999997643449836616317645009322680541283618188808770000000000000000000000000000000000000000000000000000000706965049015104706497203195837614914543357368999999999999999999999999999999999999999999999999999999787910485295468588050839041248715525636992789300000000000000000000000000000000000000000000000000000063626854411359423584748287625385342308902163209999999999999999999999999999999999999999999999999999980911943676592172924575513712384397307329351037000000000000000000000000000000000000000000000000000005726416897022348122627345886284680807801194688899999999999999999999999999999999999999999999999999998282074930893295563211796234114595757659641593330000000000000000000000000000000000000000000000000000515377520732011331036461129765621272702107522000999999999999999999999999999999999999999999999999999845386743780396600689061661070313618189367743399700000000000000000000000000000000000000000000000000046383976865881019793281501678905914543189676980089999999999999999999999999999999999999999999999999986084806940235694062015549496328225637043096905973000000000000000000000000000000000000000000000000004174557917929291781395335151101532308887070928208099999999999999999999999999999999999999999999999998747632624621212465581399454669540307333878721537570000000000000000000000000000000000000000000000000375710212613636260325580163599137907799836383538728999999999999999999999999999999999999999999999999887286936215909121902325950920258627660049084938381300000000000000000000000000000000000000000000000033813919135227263429302214723922411701985274518485609999999999999999999999999999999999999999999999989855824259431820971209335582823276489404417644454317000000000000000000000000000000000000000000000003043252722170453708637199325153017053178674706663704899999999999999999999999999999999999999999999999087024183348863887408840202454094884046397588000888530000000000000000000000000000000000000000000000273892744995340833777347939263771534786080723599733440999999999999999999999999999999999999999999999917832176501397749866795618220868539564175782920079967700000000000000000000000000000000000000000000024650347049580675039961314533739438130747265123976009689999999999999999999999999999999999999999999992604895885125797488011605639878168560775820462807197093000000000000000000000000000000000000000000002218531234462260753596518308036549431767253861157840872099999999999999999999999999999999999999999999334440629661321773921044507589035170469823841652647738370000000000000000000000000000000000000000000199667811101603467823686647723289448859052847504205678488999999999999999999999999999999999999999999940099656669518959652894005683013165342284145748738296453300000000000000000000000000000000000000000017970102999144312104131798295096050397314756275378511064009999999999999999999999999999999999999999994608969100256706368760460511471184880805573117386446680797000000000000000000000000000000000000000001617309269922988089371861846558644535758328064784065995760899999999999999999999999999999999999999999514807219023103573188441446032406639272501580564780201271730000000000000000000000000000000000000000145557834293068928043467566190278008218249525830565939618480999999999999999999999999999999999999999956332649712079321586959730142916597534525142250830218114455700000000000000000000000000000000000000013100205086376203523912080957125020739642457324750934565663289999999999999999999999999999999999999996069938474087138942826375712862493778107262802574719630301013000000000000000000000000000000000000001179018457773858317152087286141251866567821159227584110909696099999999999999999999999999999999999999646294462667842504854373814157624440029653652231724766727091170000000000000000000000000000000000000106111661199647248543687855752712667991103904330482569981872648999999999999999999999999999999999999968166501640105825436893643274186199602668828700855229005438205300000000000000000000000000000000000009550049507968252368931907017744140119199351389743431298368538409999999999999999999999999999999999997134985147609524289320427894676757964240194583076970610489438477000000000000000000000000000000000000859504455717142713203871631596972610727941625076908816853168456899999999999999999999999999999999999742148663284857186038838510520908216781617512476927354944049462930000000000000000000000000000000000077355401014542844188348446843727534965514746256921793516785161120999999999999999999999999999999999976793379695637146743495465946881739510345576122923461944964451663700000000000000000000000000000000006961986091308855976951360215935478146896327163122961416510664500889999999999999999999999999999999997911404172607343206914591935219356555931101851063111575046800649733000000000000000000000000000000000626578748217797037925622419434193033220669444681066527485959805080099999999999999999999999999999999812026375534660888622313274169742090033799166595680041754212058475970000000000000000000000000000000056392087339601733413306017749077372989860250021295987473736382457208999999999999999999999999999999983082373798119479976008194675276788103041924993611203757879085262837300000000000000000000000000000005075287860564156007197541597416963569087422501916638872636274421148809999999999999999999999999999998477413641830753197840737520774910929273773249425008338209117673655357000000000000000000000000000000456775907450774040647778743767526721217868025172497498537264697903392899999999999999999999999999999862967227764767787805666376869741983634639592448250750438820590628982130000000000000000000000000000041109831670569663658300086939077404909608122265524774868353822811305360999999999999999999999999999987667050498829100902509973918276778527117563320342567539493853156608391700000000000000000000000000003699884850351269729247007824516966441864731003897229738151844053017482489999999999999999999999999998890034544894619081225897652644910067440580698830831078554446784094755253000000000000000000000000000332989636531614275632230704206526979767825790350750676433665964771573424099999999999999999999999999900103109040515717310330788738041906069652262894774797069900210568527972770000000000000000000000000029969067287845284806900763378587428179104321131567560879029936829441608168999999999999999999999999991009279813646414557929770986423771546268703660529731736291018951167517549300000000000000000000000002697216055906075632621068704072868536119388901841080479112694314649744735209999999999999999999999999190835183228177310213679388778139439164183329447675856266191705605076579437000000000000000000000000242749445031546806935896183366558168250745001165697243120142488318477026168899999999999999999999999927175166490535957919231144990032549524776499650290827063957253504456892149330000000000000000000000021847450052839212624230656502990235142567050104912751880812823948662932355200999999999999999999999993445764984148236212730803049102929457229884968526174435756152815401120293439700000000000000000000001966270504755529136180759085269121162831034509442147669273154155379663911968089999999999999999999999410118848573341259145772274419263651150689647167355699218053753386100826409573000000000000000000000176964345427997622256268317674220904654793105849793290234583873984169752077128099999999999999999999946910696371600713323119504697733728603562068245062012929624837804749074376861570000000000000000000015926791088519786003064148590679881418931379526481396121112548658575277686941528999999999999999999995221962673444064199080755422796035574320586142055581163666235402427416693917541300000000000000000001433411197966780740275773373161189327703824157383325650900129379271774991824737609999999999999999999569976640609965777917267988051643201688852752785002304729961186218467502452578717000000000000000000129007007817010266624819603584507039493344174164499308581011644134459749264226384899999999999999999961297897654896920012554118924647888151996747750650207425696506759662075220732084530000000000000000011610630703530923996233764322605633554400975674804937772291047972101377433780374640999999999999999996516810788940722801129870703218309933679707297558518668312685608369586769865887607700000000000000001044956763317783159661038789034507019896087810732444399506194317489123969040233717689999999999999999686512971004665052101688363289647894031173656780266680148141704753262809287929884693000000000000000094046108698600484369493491013105631790647902965919995955557488574021157213621034592099999999999999971786167390419854689151952696068310462805629110224001213332753427793652835913689622370000000000000008464149782874043593254414191179506861158311266932799636000173971661904149225893113288999999999999997460755065137786922023675742646147941652506619920160109199947808501428755232232066013300000000000000761773480458663923392897277206155617504248014023951967240015657449571373430330380196009999999999999771467955862400822982130816838153314748725595792814409827995302765128587970900885941197000000000000068559613241279753105360754948554005575382321262155677051601409170461423608729734217640899999999999979432116027616074068391773515433798327385303621353296884519577248861572917381079734707730000000000006170365191715177779482467945369860501784408913594010934644126825341528124785676079587680999999999998148890442485446666155259616389041849464677325921796719606761952397541562564297176123695700000000000555332867254366000153422115083287445160596802223460984117971414280737531230710847162891289999999999833400139823690199953973365475013766451820959332961704764608575715778740630786745851132613000000000049979958052892940013807990357495870064453712200111488570617427285266377810763976244660216099999999985006012584132117995857602892751238980663886339966553428814771814420086656770807126601935170000000004498196224760364601242719132174628305800834098010033971355568455673974002968757862019419448999999998650541132571890619627184260347611508259749770596989808593329463297807799109372641394174165300000000404837660228432814111844721895716547522075068820903057422001161010657660267188207581747750409999999878548701931470155766446583431285035743377479353729082773399651696802701919843537725475674877000000036435389420558953270066024970614489276986756193881275167980104490959189424046938682357297536899999989069383173832314018980192508815653216903973141835617449605968652712243172785918395292810738930000003279185047850305794305942247355304034928808057449314765118209404186327048164224481412156778320999999016244485644908261708217325793408789521357582765205570464537178744101885550732655576352966503700000295126654306527521487534802261977363143592725170438328860638846376769434334780203327094110048889999911462003708041743553739559321406791056922182448868501341808346086969169699565939001871766985333

(10)

int(exp(-1985*(t+1/t))/sqrt(t), t = 0 .. infinity)

(1/1985)*Pi^(1/2)*exp(-3970)*1985^(1/2)

(11)

l := [seq(LinearAlgebra:-Determinant(Matrix(n, proc (i, j) options operator, arrow; 1/min(i, j) end proc)), n = 1 .. 10)]

[1, -1/2, 1/12, -1/144, 1/2880, -1/86400, 1/3628800, -1/203212800, 1/14631321600, -1/1316818944000]

(12)

with(gfun):

rec := listtorec(l, u(n))

[{u(n+1)+(n^2+5*n+6)*u(n+2), u(0) = 1, u(1) = -1/2}, ogf]

(13)

rsolve(rec[1], u)

(-1)^n*(n+1)/GAMMA(n+2)^2

(14)

``

Hope the reader will try to continue the above.

Download Putnam_done_with_Maple.mw

Hi all!

 

I do a small calculation and get a system of 6
nonlinear equations.
And "n" is the degree of the equation is float.

Here are the calculations that lead to the system.

 

restart;
 with(DirectSearch):
 B:=1: 
 q:=1: 
 l:=1: 
 n:=4.7:
 V:=0.05:
 N:=1200:
 
 
 kappa:=Vector(N+1,[]):
 theta:=Vector(N+1,[]):
 u:=Vector(N,[]):
 M:=Vector(N,[]):
 Z:=Vector(N,[]):
 
 M_F:=q*(6*l*(z-l)-z^2/2):
 M_1:=piecewise((z<l), l-z, 0):
 M_2:=piecewise((z<2*l), 2*l-z, 0):
 M_3:=piecewise((z<3*l), 3*l-z, 0):
 M_4:=piecewise((z<4*l), 4*l-z, 0):
 M_5:=piecewise((z<5*l), 5*l-z, 0):
 M_6:=6*l-z:
 M_finish:=(X_1,X_2,X_3,X_4,X_5,X_6,z)->M_1*X_1+M_2*X_2+M_3*X_3+M_4*X_4+M_5*X_5+M_6*X_6+M_F:
 
 
 kappa_old:=0:
 theta_old:=0:
 u_old:=0:
 M_old:=0:
 
 
 step:=6*l/N:
 u[1]:=0:
 kappa[1]:=0:
 theta[1]:=0:
 
 
 
 
 for i from 2 to N do
 
 z:=i*step:
 kappa_new:=kappa_old+B/V*(M_finish(X_1,X_2,X_3,X_4,X_5,X_6,z))^n*step:
 
 theta_new:=theta_old+1/2*(kappa_old+kappa_new)*step:
 
 u_new:=u_old+1/2*(theta_old+theta_new)*step:
 
 Z[i]:=z:
 kappa[i]:=kappa_new:
 theta[i]:=theta_new:
 u[i]:=u_new:
 kappa_old:=kappa_new:
 theta_old:=theta_new:
 u_old:=u_new:
 
 end do:
 
 So,my system:


 u[N/6]=0;
 u[N/3]=0;
 u[N/2]=0;
 u[2*N/3]=0;
 u[5*N/6]=0;
 u[N]=0;

 

I want to ask advice on how to solve the system.
I wanted to use Newton's method, but I don't know the initial values X_1..X_6.

Tried to set the values X_1..X_6 and to minimize the functional
Fl:=(X_1,X_2,X_3,X_4,X_5,X_6)->(u[N/6])^2+(u[N/3])^2+(u[N/2])^2+(u[2*N/3])^2+(u[5*N/6])^2+(u[N])^2:

with the help with(DirectSearch):
GlobalOptima(Fl);
But I don't know what to do next

Please, advise me how to solve the system! I would be grateful for examples!

 

I use maple worksheet to organize a derivation, etc.

But most of the paragraphs and subparagraphs should normally be closed.

 

But after executing the file (using !!!) every paragraph is opened.   

We need better ability to control the opening/closing of paragraphs.

 

How do I close ALL paragraphs.

 

Also, how do I close all TOP level paragraphs (but not subparagraphs).

 

Thanks, Chee

 

Where u and v are the displacement components in x and y directions respectively.

Today science professionals in engineering software used to only work on the desktop and even just looking to download and use mobile apps math; but they are not able to design their own applications.Maplesoft to set the solution to it through its Maple package; software supports desktop and mobile; solves problems of analysis and calculation with Embedded Components. To show this we have taken the area of different mathematical topics; fixed horizontally to a certain range of parameters and not just a constant as it is customary to develop. This paper shows how the Embedded Components allow us to develop mathematics in all areas. Achieving build applications that are interactive in mobile devices such as tablets; which are used at any time. Maple gives us design according to our university or research need, based on contemporary and modern mathematics.With this method we encourage students, teachers and researchers to use graphics algorithms.

 

CSMP_PUCP_2014.pdf

Coloquio_PUCP.mw

 

Lenin Araujo Castillo

Physics Pure

Computer Science

Hi,

I used to use windows 32 bit, but I have 64 bit windows now. I installed the MapleSim 6.4 and Maple 18 and try to run the simulations that I created with the 32 bit windows. I have this error 'Unable to compile (rc=1), please try again, and if that fails verify your Windows compiller installation'. Could you please let me know what should I do to eliminate this problem?

Best

Onder

Can maple solve maximization problem like

q := proc (a, b, c) options operator, arrow; .2*b+.1*c end proc;
print(`output redirected...`); # input placeholder
(a, b, c) -> 0.2 b + 0.1 c
w := proc (a, b, c) options operator, arrow; .7*a+.1*c end proc;
print(`output redirected...`); # input placeholder
(a, b, c) -> 0.7 ab + 0.1 c
e := proc (a, b, c) options operator, arrow; .7*a+.2*b*c end proc;
print(`output redirected...`); # input placeholder
(a, b, c) -> 0.7 a + 0.2 b c

with(Optimization)

Maxmize(int(min(100+(.7*a+q)*(1/2), a), q)+int(min(100+(.2*b+w)*(1/2), b), w)+int(min(100+(.1*c+e)*(1/2), c), e)-a-b-c-ab-ac-bc)

Error, (in Optimization:-NLPSolve) cannot convert procedures to piecewise

 

 

Thanks alot if you can help me.Urgent! Really appreciate.

 

For different reasons I need to ocasionally export a number of Maple worksheet in a folder to pdf files. Is there a way to automate this? I would want that the worksheet is opened, output removed, then executed and eventually exported to pdf. It can take quite a while to do this manually for about 50 worksheets.

I have two Reissner Nordstrom black holes that are near extreme. How do I show they move? 

y(t) = _C1*exp(-1.*t)*sin(.57736*t)+_C2*exp(-1.*t)*cos(.57736*t)

The answer i got for a DE raised in mapleprime is given above.

What command do i write now to get a plot of the same?

Ramakrishnan V

1 2 3 4 5 6 7 Last Page 1 of 25