I want to write maple code of the following algorithm with

the following parameters and initial values please help me.

T_{0} = 5.5556 × 10^{7} cells, I_{0} = 1.1111 × 10^{7} cells, V_{0} = 6.3096 × 10^{9} copies/ml,

A_{1=A}_{2}=1,

c = 0.67, h = 1, d = 3.7877 × 10^{−3}, δ = 3.259d,

λ = 2/3× 10^{8}d, R_{0} = 1.33,

p = (cV_{0}δR_{0)}/λ(R0−1)

and β = dδcR_{0}/λp .

Algorithm

step 1 :

T(0) = T_{0}, I(0) = I_{0}, V (0) = V_{0} λi(100 ) = 0 (i=1, ..., 3), u_{1}(0) = 0 =

u_{2}(0).

step 2 :

for i=1, ..., n-1, do _{:}

T_{i+1}=(T_{i} + hλ)/(1 + h[d + (1 − u_{1}^{i})βV_{i}]),

I_{i+1} =(I_{i} + h(1 − u_{1}^{i})βV_{i}T_{i+1)/(}1 + hδ),

V_{i+1} =(V_{i} + h(1 − u_{2}^{i})pI_{i+1)/(}1 + hc),

λ_{1}^{n−i−1} =(λ_{1}^{n−i} + h[1 + (1 − u_{1}^{i})βVi+1])/(1 + h[d + (1 − u_{1}^{i})βV_{i+1}]),

λ_{2}^{n−i−1} =(λ_{2}^{n−i}+ hλ_{3}^{n−i} (1 − u_{2}^{i})p)/(1 + hδ),

λ_{3}^{n−i−1} =(λ_{3}^{n−i} + h(λ_{2}^{n−i−1}− λ_{1}^{n−i−1} )(1 − u_{1}^{i})βT_{i+1)/(}1 + hc),

R1^{i+1} =(1/A1)(λ_{1}^{n−i−1}−λ_{2}^{n−i−1} )βV_{i+1}T_{i+1},

R2^{i+1} =−(1/A2)λ_{3}^{n−i−1} pI_{i+1},

u_{1i+1} = min(1, max(R1^{i+1} , 0)),

u_{2i+1} = min(1, max(R2^{i+1} , 0)),

end for

step 3 :

for i=1, ..., n-1, write

T^{∗}(t_{i}) = T_{i}, I^{∗}(t_{i}) = I_{i}, V^{ ∗}(t_{i}) = V_{i},

u_{1∗}(t_{i}) = u_{1}^{i}, u2^{∗}(t_{i}) = u_{2}^{i}.

end for