Items tagged with application application Tagged Items Feed

I would like to learn to use Maple to develop applications of math, physics, astronomy ecc.. . The problem is that I do not know where to start. Could you help me ? Thank you.


I'd like to pay attention to an article J, B. van den Berg and J.-P. Lessard, Notices of the AMS, October 2015, p. 1057-1063.  We know numerous  applications of CASes to algebra. The authors present such  applications to dynamics. It would be interesting and useful to obtain  opinions of Maple experts on this topic.

Here is its introduction:

"Nonlinear dynamics shape the world around us, from the harmonious movements of celestial bod-
ies,  via  the  swirling  motions  in  fluid  flows,  to the  complicated  biochemistry  in  the  living  cell.
Mathematically  these  beautiful  phenomena  are modeled by nonlinear dynamical systems, mainly
in  the  form  of  ordinary  differential  equations (ODEs), partial differential equations (PDEs) and
delay differential equations (DDEs). The presence of nonlinearities severely complicates the mathe-
matical analysis of these dynamical systems, and the difficulties are even greater for PDEs and DDEs,
which are naturally defined on infinite-dimensional function spaces. With the availability of powerful
computers and sophisticated software, numerical simulations have quickly become the primary tool
to study the models. However, while the pace of progress increases, one may ask: just how reliable
are our computations? Even for finite-dimensional ODEs, this question naturally arises if the system
under  study  is  chaotic,  as  small  differences  in initial conditions (such as those due to rounding
errors  in  numerical  computations)  yield  wildly diverging outcomes. These issues have motivated
the development of the field of rigorous numerics in dynamics"

I am learning to use maple for my notes preparation for the subject Finite Element Analysis. It is interesting to know that how often we blame maple or computer for the silly mistakes we made in our commands and expect the exact answers. I have used a small file and find it easy to analyse my mistakes fatser. If we make a small mistake in a big file, it not only gives us problem finding our mistakes, it leads to more mistakes in other parts as well. A command working in one document need not necessarily work the same way in other document.

I have made my first document and people will come with suggestions to make appropriate modifications in the various sections to improve my knowledge on maple as well as the subject.


Ramakrishnan V

Here the potential of maple 2015 to the quantitative study of the decomposition of a vector table is shown in two dimensions. Application for the exclusive use of engineering students, which was implemented with embedded components.


Lenin Araujo Castillo

Archivo Corregido:  Decomposició

Error, (in hanoi) cannot determine if this expression is true or false: 0 < n

hanoi:=proc(N,source,dest,aux) global moves;
if N>0 then
end if:
end proc:

We find recent applications of the components applied to the linear momentum, circular equations applied to engineering. Just simply replace the vector or scalar fields to thereby reasoning and use the right button.

(in spanish)



Here we have an application to understand how algebraic expressions, calculating degrees relative abosulutos polynomial operations and introduction to work.Here we have an application to understand how algebraic expressions, calculating degrees relative abosulutos polynomial operations and introduction to work.

(in spanish)





In case anyone is interested, we recently posted a new application on the Application Center,

Time Series Analysis: Forecasting Average Global Temperatures

While interesting in itself (well, I think so, anyway), this application also provides tips and techniques for analyzing time series data in Maple, and shows how to access online data sets through the new data sets functionality in Maple 2015.


With this application we can meet safety characteristics of a relationship and simple or compound functions. Made with maple 2015.

(in spanish)


I'd like to pay attention to an application "Interaural Time Delay" by Samir Khan. His applications are interesting, based on  real data, and  mathematically accurate. Here is its introduction:

"Humans locate the origin of a sound with several cues. One technique employs the small difference in the time taken for the sound to reach either ear; this is known as the interaural time delay (ITD). This application modifies a single-channel audio file so that the sound appears to originate at an angle from the observer. It does this by introducing an extra channel of sound. Despite both channels having the same amplitude, the sound appears to come from an angle simply by delaying one channel".

Another application for the study of rational numbers in operations, generating fraction, etc.

(in spanish)




In this work we show you what to do with the programming of Embedded Components applied to graphics in the Cartesian plane; from the visualization of a point up to three-dimensional objects and also using the Maple language generare own interactive applications for touch screen technology in mobile devices techniques. Given that computers use multicore and designed algorithms that solve calculus problems with very good performance in time; this brings programming to more complex mathematical structures such as in the linear algebra, analytic geometry and advanced methods in numerical analysis. The graphics will show real-time results for the correct use of the parallel programming undertook to bear the procedural technique is well suited to the data structure, curves and surfaces. Interaction in a single graphical container allowing the teaching and / or research the rapid change of parameters; giving a quick interpretation of the results.




L.Araujo C.

Physics Pure

Computer Science




Ever year about this time, somewhat geeky holiday-themed content makes the rounds on the internet.  And I realized that even though I have seen much of this content already, I still enjoy seeing it again. (Why wouldn’t I want to see a Dalek Christmas tree every year?)

So in the spirit of internet recycling, here are a couple of older-but-still-fun Maple applications with a Christmas/holiday theme for your enjoyment.

Talkin’ Turkey

The Physics of Santa Claus

Other examples (old or new) are most welcome, if anyone wants to share.


We received an interesting and timely submission to the Maple Application Center this morning that I think people might be interested in.  It's called:

The Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae, by Dr. Ahmed Baroudy. From the abstract:

Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.
We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.

We want to find:

I- the acceleration on the comet surface ,
II- its radius,
III- its density,
IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),
V- the time for Philae to reach altitude of 1000 m above the comet .

We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.
It turned out that our calculations for a sphere shaped comet are very close to the already known data.

Click on the link above if you want to take a look.



This application calculates the number of photons reaching a camera sensor for a given exposure. A blackbody model of the sun is generated. The "Sunny 16" rule for exposure is demonstrated. Calculations are done using

Photon ExposureNULLNULL

Blackbody Model of the Sun

    h := Units:-Standard:-`*`(Units:-Standard:-`*`(0.6626069e-33, Units:-Standard:-`^`(Unit('m'), 2)), Units:-Standard:-`*`(Unit('kg'), Units:-Standard:-`/`(Unit('s')))): 

Plank Constant       

  kb := Units:-Standard:-`*`(Units:-Standard:-`*`(0.1380650e-22, Units:-Standard:-`*`(Units:-Standard:-`^`(Unit('m'), 2), Units:-Standard:-`/`(Units:-Standard:-`^`(Unit('s'), 2)))), Units:-Standard:-`*`(Unit('kg'), Units:-Standard:-`/`(Unit('K')))): 

Boltzman Constant  

c := Units:-Standard:-`*`(0.2997925e9, Units:-Standard:-`*`(Unit('m'), Units:-Standard:-`/`(Unit('s')))):  ``

Light Speed

Rsun := Units:-Standard:-`*`(Units:-Standard:-`*`(6.955, Units:-Standard:-`^`(10, 8)), Unit('m')): ``

Sun Radius  

Re_orb := Units:-Standard:-`*`(Units:-Standard:-`*`(1.496, Units:-Standard:-`^`(10, 11)), Unit('m')): ``

Earth Orbit

Tsun := Units:-Standard:-`*`(5800, Unit('K')): ``

Sun Color Temperature     

 tf_atm := .718: 

Transmission Factor  


Sun: Spectral Radiant Exitance to Earth: Spectral Irradiance                   

  "M(lambda):=(2*Pi*h*c^(2))/((lambda)^(5))*1/((e)^((h*c)/(lambda*kb*Tsun))-1)*(Rsun/(Re_orb))^(2)*tf_atm:" NULL

evalf(M(Units:-Standard:-`*`(555, Unit('nm')))) = 1277414308.*Units:-Unit(('kg')/(('m')*('s')^3))"(->)"1.277414308*Units:-Unit(('W')/(('nm')*('m')^2))NULL

Photopic Relative Response VP vs λ


csvFile := FileTools[Filename]("/VPhotopic.csv")NULL = "VPhotopic.csv"NULL

VPdata := ImportMatrix(csvFile) = Vector(4, {(1) = ` 471 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})NULLNULL


`&lambda;P` := [seq(1 .. 4000)]:

VP := ArrayInterpolation(VPdata, `&lambda;P`):             (ArrayInterpolation for x,y data VPdata returns y' for new x data lambdaP)

NULLVParray := [`$`([`&lambda;P`[n], VP[n]], n = 1 .. 4000)]:                     

Mearth := [`$`([n, Units:-Standard:-`*`(Units:-Standard:-`*`(M(Units:-Standard:-`*`(n, Unit('nm'))), Unit('nm')), Units:-Standard:-`*`(Units:-Standard:-`^`(Unit('s'), 3), Units:-Standard:-`/`(Unit('kg'))))], n = 1 .. 4000)]:````


dualaxisplot(plot([Mearth], lambda = 300 .. 900, style = line, color = [blue], labels = ["&lambda; (nm)", "M (W/nm m^2)"], title = "Spectral Radiant Exitance of the Sun", titlefont = ["ARIAL", 15], legend = [Exitance], size = [800, 300]), plot([VParray], style = line, color = [green], labels = ["&lambda; (nm)", "Relative Response"], legend = [Units:-Standard:-`*`(Units:-Standard:-`*`(Photopic, Relative), Response)]))






Illuminance in Radiometric and Photometric Units:

E__r := sum(Units:-Standard:-`*`(M(Units:-Standard:-`*`(lambda, Unit('nm'))), Unit('nm')), lambda = 200 .. 4000) = 984.7275549*Units:-Unit(('kg')/('s')^3)"(->)"984.7275549*Units:-Unit(('W')/('m')^2)NULL


E__po := Units:-Standard:-`*`(Units:-Standard:-`*`(683.002, Units:-Standard:-`*`(Unit('lm'), Units:-Standard:-`/`(Unit('W')))), sum(Units:-Standard:-`*`(Units:-Standard:-`*`(VP[lambda], M(Units:-Standard:-`*`(lambda, Unit('nm')))), Unit('nm')), lambda = 200 .. 4000)) = HFloat(91873.47376063903)*Units:-Unit('lx')NULL

Translation from Illuminance to Luminance for Reflected Light;


Object Reflectance          R__o:      

Object Luminance           L__po := proc (R__o) options operator, arrow; R__o*E__po/(Pi*Unit('sr')) end proc:                evalf(L__po(1)) = HFloat(29244.234968360346)*Units:-Unit(('cd')/('m')^2) 


Illuminance of a Camera Sensor  Eps applied for time texp determines Luminous Exposure Hp;

Ideal Illuminance is determined by the exposure time texp, effective f-number N and to a less extent the angle to the optical axis θ;



H       Luminous Exposure


Eps     Illuminance to the Camera


N                                               Effective F-Number


texp             Exposure Time


θ        Angle to the Optical Axis    


E__ps_ideal = Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`/`(4)), L__po), Units:-Standard:-`*`(Units:-Standard:-`^`(cos(theta), 4), Units:-Standard:-`/`(Units:-Standard:-`^`(N, 2)))):

H__p_ideal = Units:-Standard:-`*`(E__ps_ideal, t__exp):


The camera meter determines the exposure time texp to balance the object luminance, reflectance and effective f-number. It does this based on an internal constant k and the camera ISO s.


s        ISO Gain (Based on saturation at 3 stops above the average scene luminance)


k       Reflected Light Meter Calibration Constant      k__m := Units:-Standard:-`*`(Units:-Standard:-`*`(12.5, Unit('lx')), Unit('s')):  

                                                                                                  for Nikon, Canon and Sekonic


c        Incident Light Meter Calibration Constant       c__m := Units:-Standard:-`*`(Units:-Standard:-`*`(250, Unit('lx')), Unit('s')):        

                                                                                                  for Sekonic with flat domeNULL

N^2/t__exp = `#mrow(mi("\`E__po\`"),mo("&sdot;"),mi("s"))`/c__m                        (Incident Light Meter)  NULL 

Units:-Standard:-`*`(Units:-Standard:-`^`(N, 2), Units:-Standard:-`/`(t__exp)) = Units:-Standard:-`*`(`#mrow(mi("\`L__po\`"),mo("&sdot;"),mi("s"))`, Units:-Standard:-`/`(k__m)):                        (Reflected Light Meter)


Solve for H in terms of the Camera Meter Constant k and s


Es = Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`/`(4)), Lo), Units:-Standard:-`*`(Units:-Standard:-`^`(cos(theta), 4), Units:-Standard:-`/`(Units:-Standard:-`^`(N, 2)))): NULL

t = Units:-Standard:-`*`(Units:-Standard:-`*`(km, Units:-Standard:-`^`(N, 2)), Units:-Standard:-`/`(Units:-Standard:-`*`(Lo, s))):NULL



H = Es*t

H = Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`/`(4)), Lo), Units:-Standard:-`*`(Units:-Standard:-`^`(cos(theta), 4), Units:-Standard:-`/`(Units:-Standard:-`^`(N, 2)))), Units:-Standard:-`*`(Units:-Standard:-`*`(km, Units:-Standard:-`^`(N, 2)), Units:-Standard:-`/`(Units:-Standard:-`*`(Lo, s))))"(=)"H = (1/4)*Pi*cos(theta)^4*km/sNULLNULL

 t = H/Es

t = Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`/`(4)), Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`^`(cos(theta), 4), km), Units:-Standard:-`/`(s))), Units:-Standard:-`/`(Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`/`(4)), Lo), Units:-Standard:-`*`(Units:-Standard:-`^`(cos(theta), 4), Units:-Standard:-`/`(Units:-Standard:-`^`(N, 2))))))"(=)"t = km*N^2/(Lo*s)NULLNULL

H__p := proc (s, theta) options operator, arrow; (1/4)*Pi*k__m*cos(theta)^4/s end proc:                                              

  evalf(H__p(100, 0)) = 0.9817477044e-1*Units:-Unit(('cd')*('s')/('m')('radius')^2)"(->)"0.9817477044e-1*Units:-Unit(('lx')*('s'))NULL


Note:  Meters are typically set for a scene reflectance 3 stops below 100% or 12.5%.


  E__ps := proc (N, R__o, theta) options operator, arrow; (1/4)*Pi*Unit('sr')*R__o*E__po*cos(theta)^4/(Pi*Unit('sr')*N^2) end proc:               

 evalf(E__ps(16, Units:-Standard:-`/`(Units:-Standard:-`^`(2, 3)), 0)) = HFloat(11.215023652421756)*Units:-Unit('lx')                                                                                                   

t__exp_ideal := proc (N, s, R__o) options operator, arrow; H__p(s, theta)/E__ps(N, R__o, theta) end proc:                                     

  evalf(t__exp_ideal(16, 100, Units:-Standard:-`/`(Units:-Standard:-`^`(2, 3)))) = HFloat(0.008753862094289947)*Units:-Unit('s') NULL NULL



Actual exposure time includes typical lens losses;

 m := Units:-Standard:-`/`(80):``


  T := .9:``

Lens Transmittance

 F := 1.03:``

Lens Flare

V := 1: ``




Total Lens Efficiency

q := Units:-Standard:-`*`(Units:-Standard:-`*`(Units:-Standard:-`*`(T, F), V), Units:-Standard:-`^`(Units:-Standard:-`+`(1, Units:-Standard:-`-`(m)), 2)):                                      evalf(q) = .9039698438NULL


Replacing Eps with q*Eps we get the "Sunny 16" relation between exposure time and ISO;  NULL

t__exp := proc (N, s, R__o) options operator, arrow; H__p(s, theta)/(q*E__ps(N, R__o, theta)) end proc:NULL               evalf(t__exp(16, 100, Units:-Standard:-`/`(Units:-Standard:-`^`(2, 3)))) = HFloat(0.009683798806264942)*Units:-Unit('s')NULL

t__exp_alt := proc (N, s, R__o) options operator, arrow; k__m*N^2*Pi/(s*q*R__o*E__po) end proc:                  evalf(t__exp_alt(16, 100, Units:-Standard:-`/`(Units:-Standard:-`^`(2, 3)))) = HFloat(0.00968379880412244)*Units:-Unit('s') 


The Number of Photons NP Reaching the Sensor Area A;


Circle of confusion for 24x36mm "Full Frame" for 1 arcminute view at twice the diagonal:

                          A__cc := Units:-Standard:-`*`(Units:-Standard:-`*`(Pi, Units:-Standard:-`^`(Units:-Standard:-`*`(12.6, Unit('`&mu;m`')), 2)), Units:-Standard:-`/`(4)):    



  Sensor Bandwidth                                          Photopic Response VP


  Exposure Time for Zone 5: Rscene=12.5% , Saturation in Zone 8 Rscene=100%


  Camera ISO differs from Saturation ISO. Typical Saturation ISO is 2300 when the camera is set to 3200. See DxoMark.



The average number of photons for exposure time based on Reflectance of the scene  relative to the metered value:    

Zone 5;   R__meter := R__scene: 

NP := proc (s, R__o, theta) options operator, arrow; (1/4)*t__exp(N, s, R__meter)*A__cc*q*R__scene*cos(theta)^4*(sum(VP[lambda]*M(lambda*Unit('nm'))*Unit('nm')*lambda*Unit('nm')/(h*c), lambda = 200 .. 4000))/N^2 end proc: 

                                                                               evalf(NP(2300, 1, Units:-Standard:-`*`(0, Unit('deg')))) = HFloat(2191.5645712603696)  NULL

Zone 8;       R__meter := Units:-Standard:-`*`(R__scene, Units:-Standard:-`/`(Units:-Standard:-`^`(2, 3))):   NULL

NP__sat := proc (s, theta) options operator, arrow; (1/4)*t__exp(N, s, R__meter)*A__cc*q*R__scene*cos(theta)^4*(sum(VP[lambda]*M(lambda*Unit('nm'))*Unit('nm')*lambda*Unit('nm')/(h*c), lambda = 200 .. 4000))/N^2 end proc:  NULL

                                                                              evalf(NP__sat(2300, Units:-Standard:-`*`(0, Unit('deg')))) = HFloat(17532.516570082957)NULL



Approximate Formula


H__sat := proc (s__sat) options operator, arrow; H__p(s__sat, 0)*E__ps(N, 1, 0)/E__ps(N, 1/8, 0) end proc:      

                                                                                       evalf(H__sat(s__sat)) = HFloat(78.53981635)*Units:-Unit(('cd')*('s')/('m')('radius')^2)/s__satNULLNULL

Average Visible Photon Energy

P__e_ave := Units:-Standard:-`*`(Units:-Standard:-`/`(Units:-Standard:-`+`(850, -350)), sum(Units:-Standard:-`*`(Units:-Standard:-`*`(h, c), Units:-Standard:-`/`(Units:-Standard:-`*`(lambda, Unit('nm')))), lambda = 350 .. 850)):                    evalf(P__e_ave) = 0.3533174192e-18*Units:-Unit('J') 

NPtyp := proc (s__sat) options operator, arrow; H__sat(s__sat)*A__cc/(683.002*(Unit('lm')/Unit('W'))*P__e_ave) end proc: 

                               evalf(NPtyp(2300)) = HFloat(17644.363333654386)"(->)"HFloat(17644.363333654386)NULL




1 2 3 Page 1 of 3