Items tagged with boundary boundary Tagged Items Feed

Hello everyone,

i'm trying to simulate a diffusion problem. It contains two connected regions in which a species is diffusing at different speeds. In one region (zeta) one boundary is set to be constant whereas in the other region (c) there is some oscillation at the boundary.The code i try to use is as follows:

sys1 := [diff(c(x, t), t) = gDiffusion*10^5*diff(c(x, t), x$2), diff(zeta(x, t), t) = KDiffusion*10^6*diff(zeta(x, t), x$2)]

pds := pdsolve(sys1, IBC, numeric, time = t, range = 0 .. 3000, spacestep = 3)

However the main problem are my boundary conditions:

IBC := {c(0, t) = 0, c(x > 0, 0) = 0, zeta(0, t) = .4, zeta(x > 0, 0) = .4, (D[1](c))(3000, t) = sin((1/100)*t), (D[1](zeta))(0, t) = 0}

Like this it principally works (however it is apparently ill-posed).

Now what i do like is that the two equations are coupled at x=2000 with the condition that c(2000,t)=zeta(2000,t). This however i dont seem to be able to implement.

I appreciate your comments

Goon

Is it possible to solve piecewise differential equations directly instead of separating the pieces and solving them separately.

like for example if i have a two dimensional function f(t,x) whose dynamics is as follows:

dynamics:= piecewise((t,x) in D1, pde1, pde2); where D1 is some region in (t,x)-plane

now is it possible to solve this system with one pde call numerically?

pde(dynamics, boundary conditions, numeric); doesnot work

Hello guys ...

I used a numerically method to solve couple differential equation that it has some boundary conditions. My problem is that some range of answers has 50% error . Do you know things for improving our answers in maple ?

my problem is :

a*Φ''''(x)+b*Φ''(x)+c*Φ(x)+d*Ψ''(x)+e*Ψ(x):=0

d*Φ''(x)+e*Φ(x)+j*Ψ''(x)+h*Ψ(x):=0

suggestion method by preben Alsholm:

a,b,c,d,e,j,h are constants.suppose some numbers for these constants . I used this code:


VR22:=0.1178*diff(phi(x),x,x,x,x)-0.2167*diff(phi(x),x,x)+0.0156*diff(psi(x),x,x)+0.2852*phi(x)+0.0804*psi(x);
VS22:=0.3668*diff(psi(x),x,x)-0.0156*diff(phi(x),x,x)-0.8043*psi(x)-0.80400*phi(x);
bok:=evalf(dsolve({VR22=0,VS22=0}));

PHI,PSI:=op(subs(bok,[phi(x),psi(x)]));
Eqs:={eval(PHI,x=1.366)=1,eval(diff(PHI,x),x=1.366)=0,eval(PHI,x=-1.366)=1,eval(diff(PHI,x),x=-1.366)=0,
eval(PSI,x=1.366)=1,eval(PSI,x=1.366)=1};
C:=fsolve(Eqs,indets(%,name));
eval(bok,C);
SOL:=fnormal(evalc(%));


I used digits for my code at the first of writting.

please help me ... what should i do?

im solving 6 ODE which is the equations are unsteady with boundary conditions.. the program can be run when A=0 but when A=0.2 or others value .. its cannot be run... A means for unsteadiness... before this i solve for steady equations.. this is first time i solve for unsteady using maple.. anyone know where i am wrong??? thanks for helping :)

 

restart; with(plots); n := 2; Ec := 2.0; Pr := .72; N := .2; M := .1; l := 1; Nr := 1; y := 1; blt := 2.5; B := .1; a1 := 1; rho := .5

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+l*B*H(eta)*(F(eta)-(diff(f(eta), eta)))-M*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(f(eta), eta, eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2+.1*H(eta)*(F(eta)-(diff(f(eta), eta)))-.1*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(diff(f(eta), eta), eta))) = 0

(1)

Eq2 := A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;

A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+.1*F(eta)-.1*(diff(f(eta), eta)) = 0

(2)

Eq3 := .5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

.5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+.1*f(eta)+.1*G(eta) = 0

(3)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(4)

Eq5 := (1+Nr)*(diff(theta(eta), eta, eta))+Pr*((diff(theta(eta), eta))*f(eta)-2*(diff(f(eta), eta))*theta(eta))+N*Pr*a1*(theta1(eta)-theta(eta))/rho+N*Pr*Ec*B*(F(eta)-(diff(f(eta), eta)))^2/rho+Pr*Ec*(diff(f(eta), eta))^2-.5*A*Pr*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0;

2*(diff(diff(theta(eta), eta), eta))+.72*(diff(theta(eta), eta))*f(eta)-1.44*(diff(f(eta), eta))*theta(eta)+.2880000000*theta1(eta)-.2880000000*theta(eta)+0.5760000000e-1*(F(eta)-(diff(f(eta), eta)))^2+1.440*(diff(f(eta), eta))^2-.360*A*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0

(5)

Eq6 := 2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+a1*y*(theta1(eta)-theta(eta))+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0;

2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+theta1(eta)-theta(eta)+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0

(6)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, F(blt) = 0, G(blt) = -f(blt), H(blt) = n, theta(0) = 1, theta(blt) = 0, theta1(blt) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(2.5) = 0, F(2.5) = 0, G(2.5) = -f(2.5), H(2.5) = 2, theta(0) = 1, theta(2.5) = 0, theta1(2.5) = 0

(7)

L := [0., .2, .5];

[0., .2, .5]

(8)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, A = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta1(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YP || k := rhs(R[5]); YR || k := rhs(R[6]); YQ || k := rhs(R[7]); YA || k := rhs(R[9]); YB || k := rhs(R[8]) end do

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

P1 := plot([Y || (1 .. 3)], 0 .. 10, labels = [eta, (D(f))(eta)])

P2 := plot([YP || (1 .. 3)], 0 .. 10, labels = [eta, F(eta)])

plots:-display([P1, P2])

Error, (in plots:-display) expecting plot structures but received: [P1, P2]

 

``

 

Download unsteadyManjunatha.mw

How do I find the constants in a solution containing whittaker functions?

the boundary conditions are:

c(x,0)=1

c(0,y)=1

[c'(1,y),x]=0

 

 

 

Hi,

Please I need help in this subject. I would like to compare the numerical solution obtained by finite difference and pdsolve/numeric.

The equation considred is  diffusion Equation using Forward-time centered-space (FTCS) stencil
The code work well with Dirichlet boundary condition, but I want to let  x=-1  Dirichlet boundary condition but on x=1, we put a Neumann condition likeeval( diff(u(t,x),x),x=1)=1. Thank you very much to put the necessary in the attached code the changment.      
Many thinks.

Change_boundary_condition_in_procedure.mw    

Hi,

I solve laplace equation in a square. All the lines of my code is okay.

Please just look to the last part of my code titled procedure:

When I run my code without (last funciton f #f := (x,y) -> 0;) see last lines to find "f". It's runing, there is no problem. But when I put add f, there is an error. Many think  for any help.

Procedure
Using the previous suty in section stencil we can write the procedure to solve the Laplace equation in [0,1]*[0,1] with the boundary condition Neumann conditions on the vertical boundary and Dirichlet boundary condition on the horizontal baoundary. In our study we will use the same stepsize h in x and y direction.

PoissonSolve:=proc(N,_f)
local Z,i,h,y,x,sys,w,f,sol,j,u,Data;
# define basic grid parameters
Z := i -> (1/(N+1))*i;
x[0] = Z(0),x[N+1] = Z(N+1),y[0] = Z(0),y[N+1] = Z(N+1);
 h := evalf(Z(1)-Z(0));
# Fix the boundary data and the source matrix
for i from 0 to N+1 do:
    # Neumann boundary condition
     u[N+1,i] :=  u[N,i] ;    
     u[0,i] := u[1,i];
     # Dirichlet boundary condition
     u[i,0] := 0;
     u[i,N+1] := 0;
   od:
   f := Array(0..N+1,0..N+1,[seq([seq(evalf(_f(Z(i),Z(j))),i=0..N+1)],j=0..N+1)],datatype=float);
# Write down the system of equations to solve and solve them
     sys := [seq(seq(Stencil(h,i,j,u,f),i=1..N),j=1..N)];
  w := [seq(seq(u[i,j],i=1..N),j=1..N)];
  sol := LinearSolve(GenerateMatrix(sys,w));
   # parse the solution vector sol back into "matrix" form
   for i from 1 to N do:
     for j from 1 to N do:
        u[i,j] := sol[(j-1)*N+i]:
     od:
   od:
# generate a 3D plot of the solution using the surfdata command
   Data := [seq([seq([Z(i),Z(j),u[i,j]],i=0..N+1)],j=0..N+1)]:
surfdata(Data,axes=boxed,labels=[`x`,`y`,`u(x,y)`],shading=zhue,style=patchcontour);
end proc:



Here is an example of the output when the source function is set to zero
                                 f(x, y) = 0
; i.e., when  reduces down to Laplace's equation:
#f := (x,y) -> 0;
#PoissonSolve(10,f);

 

 

Question8.mw

im solving 4 ODe with boundary conditions.. i got this error Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 8, got 7


i am trying to solve 6 ODE with boundary condition


restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


Download hydro.mw

restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


then i get this error

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

i dont know where i need to change after view it one by one..

Download hydro.mw

Hi, everyone!

I need help.

There are a system of 2 pde's: 

diff(Y(x, t), x$2) = exp(-2*x*b)*(A(x, t)-Y(x, t)), diff(A(x, t), t) = exp(-2*x*b)*(Y(x, t)-A(x, t)) 

and initial and boundary conditions: 

A(x, 0) = 0, Y(0, t) = 0.1, (D[1](Y))(0, t) = 0. 

Goal: 
For each b = 0, 0.05, 0.1. 
1)to plot 3-d  Y(x,t): 0<=x<=20,0<=t<=7. 
2)to plot  Y(x,4). 

Are there any methods with no finite-difference mesh?


I realized the  methods such as  pds1 := pdsolve(sys, ibc, numeric, time = t, range = 0 .. 7)  can't help me:

Error, (in pdsolve/numeric/match_PDEs_BCs) cannot handle systems with multiple PDE describing the time dependence of the same dependent variable, or having no time dependence 

I found something, that can solve my system analytically: 
pds := pdsolve(sys), where sys - my system without initial and boundary conditions. At the end of the output: huge monster, consisted of symbols and numbers :) And I couldn't affiliate init-bound conditions to it.

I use Maple 13. 

i am solving 4 ODE with boundary condition..

> restart;
> with*plots;

 

then i got this error..

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

i dont know where i need to change.. could you help me..

 

 

 

Hi ,

I would like to resolve the Kortweg and de Devries equation :

> KDV2:= diff( u(X,T), T)+ 6*u(X,T)*diff(u(X,T),X)+ diff(u(X,T),X$3);

 

I used pdsolve but I have a problem to enter the IBC :

I want

u(infinity, t) =0
u( -infinity, t )=0

u ( x, 0 ) = 1


So I did :


> SOL:=pdsolve(diff( u(X,T), T)+ 6*u(X,T)*diff(u(X,T),X)+ diff(u(X,T),X$3)=0,{u(-10, T) = 0, u(10, T) = 0, u(X, 0) =1},numeric,time=T,range=-10..10);

 

But it doesn't work.

( I remplace infinity by 10 because then I want the graphic representation of the solution )

Could you help me please ?  

hi, I am new here I want to solve these toe coupled equations with the following boundary condition numerically:

  1)  diff(f(eta),eta$3)+(1)/(2)*f(eta)*diff(f(eta),eta$2)-xi*(2*f(eta)*(diff(f(eta),eta))*

(diff(f(eta),eta,eta))+f(eta)^2*(diff(f(eta),eta,eta,eta))+eta*(diff(f(eta),eta))^2*(diff(f(eta),eta$2)))-K*

(diff(f(eta),eta)-1)=0

2)   diff(theta(eta),eta,eta)+(1)/(2)*Pr*f(eta)*(diff(theta(eta),eta))=0

boundary conditions: 1)  f(0) = 0   2)  D(f)(0) = 0   3)  D(f)(infinity=10) = 1

                               1) theta(infinity=10) = 1      2) theta(0)=0

xi=0.2 ... 1    K=0.2     pr=0.7

Thank you for your help with this question. I found what I was looking for. 

Hello,

I would like to solve the differential equation in the following link:

http://www.utdallas.edu/~frensley/technical/nanomes91/node2.html

 

Without using any explicit discretization. Is it possible to solve this equation with a Maple dsolve comand and some boundary condition option?

1 2 3 4 Page 1 of 4