Items tagged with bug

Hello there! Maple 2016.1 sometimes gets crasy about parsing input strings. I managed to capture this behaviour in the attached file. It looks like below. I am not sure what exactly triggers it. It just starts happening all of a sudden. What might be the cause...? 


"1 Pi"

Error, incorrect syntax in parse: `;` unexpected (near 4th character of parsed string)

"1 Pi"



Error, invalid semantics "π"




Error, incorrect syntax in parse: `;` unexpected (near 4th character of parsed string)






This question is related to the recent post

1. Consider the following fast convergent series:


As expected, the sum of the series is obtained very fast (with any precision), same results for S1 and S2.

2. Now change the series to a very slowly convergent one:


evalf(S1) is computed also extremely fast, because the acceleration algorithm works here perfectly.
But evalf(S2) demonstrates a bug:

Error, (in evalf/Sum1) invalid input: `evalf/Sum/infinite` expects its 2nd argument, ix, to be of type name, but received ...

3. Let us take another series:


Now evalf(S1) does not evaluate numerically and evalf(S2) ==> same error.
Note that I do not know whether this series is convergent or not, but the same thing happens for the obviously convergent series


(because it converges slowly (but absolutely) and the acceleration fails).
I would be interested to know a method to approximate (in Maple) the sum of such series.

Edit. Now I know that the mentioned series 

converges (but note that Leibniz' test cannot be used).

eulermac(1/(n*ln(n)^2),n=2..N,1);  #Error
Error, (in SumTools:-DefiniteSum:-ClosedForm) summand is singular in the interval of summation

eulermac(1/(n*ln(n)^2+1),n=2..N,1);  #nonsense




When I execute the command


and then refer to the equation in a new execution group using a equation label (CTRL-L on Windows), the equation is shown in Maple 18, but in Maple 2015 I get an error message: 'Error, missing operator or ';'. Using the % instead does work for both versions.

Is this intended behaviour or a bug in Maple 2015?



in LinearAlgebra Eigenvectors calculation.

Maple 2015 Error



So the above output startled me.  I have used the Maple Linear Algebra Eigenvalues, Eigenvectors commands many times with no problem.  Can any one explain to me what is going on.  The program correctly calculates the eigenvalues for the matrix which are all distinct for a real symmetric matrix, and thus should have three distinct non-zero eigenvectors, yet the eigenvectore command returns only zeros for the eigenvectors.  I calculated an eigenvector by hand corresponding to the eigenvalue of 1 and obtained (1, -sqrt(2)/sqrt(3), -1/sqrt(3).


So this is either a serious bug or I am going completely insane. 

Found a strange behaviour in Mapke 2015 of the sqrt-function after loading the GRTensor package:

the square-root of a non-square integer, e.g. sqrt(5), does not terminate. 5^(1/2) instead works fine.

Can be reproduced with Maple 18, but not with Maple 11.

I consider this a serious bug, as it makes any expressions containing such roots useless.

As it worked with Maple 11 I am inclined to see it as your fault.


In the running of an example I faced to computation of radical ideal of the following ideal:



I used from Radical command in PolynomialIdeals package. But I dno't now why it's computation is very hard and Time-consuming?

What I have to do? I think there is a bug, since this ideal is simple, apparently.

In Maple 2015.1 we have


solve([sin(2*x)/cos(x+3*Pi/2)=1,  x>-4*Pi, x<-5*Pi/2], x, allsolutions, explicit);

solve([sin(2*x)/cos(x+3*Pi/2)=1, x>0, x<2*Pi], x, allsolutions, explicit);



In the first example, the error message is not clear (actually there exists a unique root  x=-11*Pi/3), in the second example, one root  (x=5*Pi/3) is lost.


Has anyone tried to run the following in Maple command-line mode (i.e. in terminal window, type "maple" to start it without the graphic interface),




Surprisingly, I didn't get "0" with my Maple 17 (under Linux platform) or 18 (under Mac OSX platform). Can anyone help me confirm this?


     I'm trying to solve this PDE, and Maple 2015 gives me a solution quickly. I can test the solution with pdetest() and this verifies that it works. However, when I try to verify this myself I don't get zero. Is there some trick pdetest() is using to that I am missing? Or is pdetest() wrong in this case?



eq := I*exp(-(2*I)*k*t)*k*sin(theta)*r^2*cos(theta)^3+4*exp(-(2*I)*k*t)*r*cos(theta)^3+2*(diff(Vr(t, r, theta), theta, theta))*cos(theta)*exp(-I*k*(sin(theta)*r+t))-6*(diff(Vr(t, r, theta), theta))*sin(theta)*exp(-I*k*(sin(theta)*r+t))-4*Vr(t, r, theta)*cos(theta)*exp(-I*k*(sin(theta)*r+t))-4*exp(-(2*I)*k*t)*r*cos(theta);

I*exp(-(2*I)*k*t)*k*sin(theta)*r^2*cos(theta)^3+4*exp(-(2*I)*k*t)*r*cos(theta)^3+2*(diff(diff(Vr(t, r, theta), theta), theta))*cos(theta)*exp(-I*k*(sin(theta)*r+t))-6*(diff(Vr(t, r, theta), theta))*sin(theta)*exp(-I*k*(sin(theta)*r+t))-4*Vr(t, r, theta)*cos(theta)*exp(-I*k*(sin(theta)*r+t))-4*exp(-(2*I)*k*t)*r*cos(theta)


sol := pdsolve(eq);

Vt(t, r, theta) = _F2(t, r)/cos(theta)^2+sin(theta)*_F1(t, r)/cos(theta)^2-((1/2)*I)*(cos(theta)^2*k^2*r^2-2)*exp(I*(sin(theta)*r-t)*k)/(k^3*r^2*cos(theta)^2)


pdetest(sol, eq);



eq2 := eval(eq, Vr(t,r,theta) = rhs(sol)):
eq2 := simplify(%);

-((1/2)*I)*exp(-(2*I)*k*t)*k*r^2*cos(theta)^3+2*exp(-(2*I)*k*t)*r*sin(theta)*cos(theta)-3*(diff(Vt(t, r, theta), theta))*sin(theta)*exp(-I*k*(sin(theta)*r+t))-2*Vt(t, r, theta)*cos(theta)*exp(-I*k*(sin(theta)*r+t))+(diff(diff(Vt(t, r, theta), theta), theta))*cos(theta)*exp(-I*k*(sin(theta)*r+t))


evalb(eq2 = 0);







I think that I found a bug in Maple! Please run the following command:

I need the Generators of above Ideal. What is your idea?!


     I was just curious about the difference between defining tensors as arrays/matricies/TensorArrays vs defining them as algebraic symbols. I found that defining them as an expression lead to the wrong answer, and I was forced to define a tensor (LKh) as an array. I've attached a worksheet demonstrating my problem.

I apologize for the amount of tensors needed to find this problem, but it is the only one I have reproduced the issue. I basically define the metric
Metric = g_
auxillary tensor = h
Killing vector = K
LieDerivative of h, wrt K = LKh (not a tensor array)
LieDerivative of h, wrt K = LKh2 (tensor array)
Then I compare two expressions, rho1 and rho2 computed from LKh and LKh2 and they disagree.



     I'm computing a simple covariant derivative of a tensor field W[a,b] in 3 spacetime dimensions. Unfortuntly, my result in Maple 2015 is disagreeing with those obtained in GRTensorII. I think this could be a bug in D_.

Looking at the first result, W[r t ; t] = mu/r in GRTensor II  but D_[t] W[r t] = -mu/r*(cos(theta)^2 - 2). Some ones are correct (diagonals), and some are off by a factor of 2. Some are completely off though.



     I was wondering if there is an easy way to define another set of indices in the Physics package. For example, usually greek indices are for all 4 spacetime dimensions. Using Setup(spaceindices = lowercaselatin), we can define 3 of those as space indices. I was hoping there is a more general command, so that I could use only 2 indices as "space indices". For example, X[i] would run over x,y while X[mu] would run over t, z. Is there such a command in the Physics package, or a simple way to implement this personally?

Second thing. I was playing with SumOverRepeatedIndices on an expression that contained both space indices and spacetime indices. Usually this seems to work, but in my attached example it does not. I tried the same thing with just spacetime indices in Maple 18 (newest Physics update) and it gave the same error.

Any help appreciated,

1 2 3 4 5 6 7 Last Page 3 of 11