Items tagged with bvp bvp Tagged Items Feed

Hello!
Try to consider the following system of differential equations:

sys := diff(U(ksi), ksi) = (y(ksi)-(1.5*(1+0.01*ksi))*U(ksi)/ksi)/(1.5+0.015*ksi+0.002*ksi^2),
diff(y(ksi), ksi) = U(ksi)*(0.002+(1.5*(1+0.01*ksi))*(0.002*ksi^2)/(ksi^2*(1.5+0.015*ksi+0.002*ksi^2))-19.3^2)-y(ksi)*(0.002*ksi^2)/(ksi*(1.5+0.015*ksi+0.002*ksi^2))

with the boundary conditions: cond:= y(0.8) = 0, y(1) = 0

And Maple gives me zero solution for this system , i mean U(from 0.8  to 1) = 0 and y(from 0.8 to 1) = 0

How can i get some other solutions?


P.S. i need numerical solution => dsolve( [sys,cond],type= numeric)

Please, i need some help.

hi.I want to dsolve set of nonlinear equations with one unknown parameter ...is this possible with dsolve rule.in matlab this possible with bvp4c rule..please help me for this problem.if we should another rule please attached file reform.Thanks alot12.mw

 

restart; Digits := 10; F[0] := 0; F[1] := 0; F[2] := (1/2)*A; T[0] := 1; T[1] := B; M := 2; S := 1; Pr := 1

for k from 0 to 12 do F[k+3] := (-3*(sum((k+1-r)*(k+2-r)*F[r]*F[k+2-r], r = 0 .. k))+2*(sum((r+1)*F[r+1]*(k+1-r)*F[k+1-r], r = 0 .. k))+M*(k+1)*F[k+1]-T[k])*factorial(k)/factorial(k+3); T[k+2] := (-3*Pr*(sum((k+1-r)*F[r]*T[k+1-r], r = 0 .. k))-S*T[k])*factorial(k)/factorial(k+2) end do:

(1/630)*x^7*A*B+(1/8064)*x^9*A*B-(121/1209600)*x^10*A^2*B+(19/369600)*x^11*A*B-(11/725760)*x^12*A^2*B+(97/19958400)*x^12*A*B^2+(1/12)*x^4*A-(1/24)*x^4*B+(1/120)*x^5*A^2+(1/180)*x^6*A-(1/720)*x^6*B-(1/630)*x^7*A^2-(13/40320)*x^8*A^3+(11/20160)*x^8*A-(11/40320)*x^8*B-(19/60480)*x^9*A^2-(1/45360)*x^9*B^2+(391/3628800)*x^10*A+(37/604800)*x^10*A^3-(23/1814400)*x^10*B-(41/39916800)*x^11*B^2+(229/13305600)*x^11*A^4-(439/7983360)*x^11*A^2+(197/21772800)*x^12*A-(883/159667200)*x^12*B+(29/1520640)*x^12*A^3+(1/2)*A*x^2-(1/6)*x^3-(1/120)*x^5-(1/1680)*x^7-(11/362880)*x^9-(23/2661120)*x^11

(1)

print(expand(t)):

1-(20747/79833600)*x^12*A*B+(29/1680)*x^7*A^2*B-(451/241920)*x^10*A^3*B-(2507/14515200)*x^12*A^3*B+(2921/13305600)*x^11*A*B^2-(33/4480)*x^8*A*B+(761/403200)*x^10*A*B+(1/48)*x^6*A*B-(1/8)*x^4*A*B+(977/887040)*x^11*A^2*B+(1349/4838400)*x^12*A^2*B^2-(1/1152)*x^9*A^2*B-(11/7560)*x^9*A*B^2-(37/44800)*x^10*A^2+(223/604800)*x^10*B^2+(47/633600)*x^11*A-(7913/19958400)*x^11*B+(193/6652800)*x^11*B^3+(1409/1478400)*x^11*A^3-(4813/53222400)*x^12*B^2-(167/221760)*x^12*A^2+(3/40)*x^5*A+(1/30)*x^5*B+(1/240)*x^6*B^2-(1/560)*x^7*A-(23/2520)*x^7*B-(43/4480)*x^8*A^2-(1/896)*x^8*B^2+(61/13440)*x^9*A+(31/22680)*x^9*B-(1/6)*B*x^3+B*x+(2573/95800320)*x^12-(1/2)*x^2+(1/24)*x^4-(13/720)*x^6+(11/8064)*x^8-(2143/3628800)*x^10

(2)

solve({limit(numapprox:-pade(t, x, [2, 2]), x = infinity) = 0., limit(numapprox:-pade(diff(f, x), x, [2, 2]), x = infinity) = 1}, {A, B});

{A = -.7359903327, B = 1.324616408}, {A = -0.7307377025e-1+2.009578912*I, B = .3744177908+.5971332133*I}, {A = .6936483785+.1660915631*I, B = .1622123331+.9257041678*I}, {A = -2.182873922*I, B = .8203849935*I}, {A = .3431199285*I, B = 1.783825109*I}, {A = -.6936483785+.1660915631*I, B = -.1622123331+.9257041678*I}, {A = 0.7307377025e-1+2.009578912*I, B = -.3744177908+.5971332133*I}, {A = .7359903327, B = -1.324616408}, {A = 0.7307377025e-1-2.009578912*I, B = -.3744177908-.5971332133*I}, {A = -.6936483785-.1660915631*I, B = -.1622123331-.9257041678*I}, {A = 2.182873922*I, B = -.8203849935*I}, {A = -.3431199285*I, B = -1.783825109*I}, {A = .6936483785-.1660915631*I, B = .1622123331-.9257041678*I}, {A = -0.7307377025e-1-2.009578912*I, B = .3744177908-.5971332133*I}

(3)

solve({limit(numapprox:-pade(t, x, [3, 3]), x = infinity) = 0., limit(numapprox:-pade(diff(f, x), x, [3, 3]), x = infinity) = 1}, {A, B});

{A = 4.154051132, B = 17.13248053}, {A = .5466914672+.2697341397*I, B = .1291930705+.9494499975*I}, {A = .4506017673+.3824137679*I, B = -.2437153257+1.192091322*I}, {A = .5458260296+.5776530367*I, B = .3085138074+1.260130057*I}, {A = .3007754662+.5799020019*I, B = 0.8347381159e-1+1.033103936*I}, {A = .3916946210+1.036293227*I, B = .9202208108+1.239552889*I}, {A = .1349186305+.5994923360*I, B = 1.926737919+1.099451808*I}, {A = .5141206762+2.582294380*I, B = -.7917198503+.5287783790*I}, {A = 1.669898274*I, B = 1.659206265*I}, {A = 3.170666197*I, B = -.6372670837*I}, {A = -.5141206762+2.582294380*I, B = .7917198503+.5287783790*I}, {A = -.1349186305+.5994923360*I, B = -1.926737919+1.099451808*I}, {A = -.3916946210+1.036293227*I, B = -.9202208108+1.239552889*I}, {A = -.3007754662+.5799020019*I, B = -0.8347381159e-1+1.033103936*I}, {A = -.5458260296+.5776530367*I, B = -.3085138074+1.260130057*I}, {A = -.4506017673+.3824137679*I, B = .2437153257+1.192091322*I}, {A = -.5466914672+.2697341397*I, B = -.1291930705+.9494499975*I}, {A = -4.154051132, B = -17.13248053}, {A = -.5466914672-.2697341397*I, B = -.1291930705-.9494499975*I}, {A = -.4506017673-.3824137679*I, B = .2437153257-1.192091322*I}, {A = -.5458260296-.5776530367*I, B = -.3085138074-1.260130057*I}, {A = -.3007754662-.5799020019*I, B = -0.8347381159e-1-1.033103936*I}, {A = -.3916946210-1.036293227*I, B = -.9202208108-1.239552889*I}, {A = -.1349186305-.5994923360*I, B = -1.926737919-1.099451808*I}, {A = -.5141206762-2.582294380*I, B = .7917198503-.5287783790*I}, {A = -1.669898274*I, B = -1.659206265*I}, {A = -3.170666197*I, B = .6372670837*I}, {A = .5141206762-2.582294380*I, B = -.7917198503-.5287783790*I}, {A = .1349186305-.5994923360*I, B = 1.926737919-1.099451808*I}, {A = .3916946210-1.036293227*I, B = .9202208108-1.239552889*I}, {A = .3007754662-.5799020019*I, B = 0.8347381159e-1-1.033103936*I}, {A = .5458260296-.5776530367*I, B = .3085138074-1.260130057*I}, {A = .4506017673-.3824137679*I, B = -.2437153257-1.192091322*I}, {A = .5466914672-.2697341397*I, B = .1291930705-.9494499975*I}

(4)

 

Download D.T.M.mw

restart:

with(student):

with(plots):

with(plots):

Digits := 19:

inf := 28.5:

equ1 := diff(f(eta), eta, eta, eta)+3*(diff(f(eta), eta, eta))*f(eta)-2*(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+theta(eta) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+3*(diff(diff(f(eta), eta), eta))*f(eta)-2*(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+theta(eta) = 0

(1)

equ2 := diff(theta(eta), eta, eta)+3*Pr*f(eta)*(diff(theta(eta), eta))+S*theta(eta) = 0;

diff(diff(theta(eta), eta), eta)+3*Pr*f(eta)*(diff(theta(eta), eta))+S*theta(eta) = 0

(2)

FNS := f(eta), theta(eta);

f(eta), theta(eta)

(3)

s := 0:

BC := f(0) = s, (D(f))(0) = 0, (D(f))(inf) = 1, theta(0) = 1, theta(inf) = 0;

f(0) = 0, (D(f))(0) = 0, (D(f))(28.5) = 1, theta(0) = 1, theta(28.5) = 0

(4)

CODE := [M = 2, Pr = 1, S = 1]:

S1 := dsolve({BC, subs(CODE, equ1), subs(CODE, equ2)}, {f(eta), theta(eta)}, type = numeric):

S1(0)

[eta = 0., f(eta) = 0., diff(f(eta), eta) = 0., diff(diff(f(eta), eta), eta) = .7424080874401649594, theta(eta) = 1.000000000000000000, diff(theta(eta), eta) = .9438662130843066161]

(5)

NULL

NULL

 

Download shooting_method.mw

Thank you so much for your time. Here's the real problem

f'''(η) + 3f(η)f''(η) - 2[f'(η)] 2 + θ(η) - m*f'(η) = 0

θ''(η) + 3*Pr*f(η)θ'(η) + s*θ(η) = 0

Boundary conditions are:

at η=0: f(η)=f'(η)=0; θ(η)=1;

as η→∞ f'(η)=1; θ(η)=0;

Where m = magnetic parameter (in this case taken as 2)

S = shrinking parameter (in this case taken as 1)

Pr = taken as 1 too

I haven't been able to solve this using differential transforms method (i.e getting the values of f''(0) and θ'(0) denoted by A and B respectively) but shooting method works just fine. :( I seriously need help with this. Thanks you in advance.
I've attached my codes above and i'm hoping someone helps me out real soon. thanks very one.

restart;

with(plots);

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M^2*(diff(f(eta), eta))+B(f(eta)*(diff(f(eta), eta, eta))*(diff(f(eta), eta))-f(eta)^2*(diff(f(eta), eta, eta, eta))) = 0;

Eq2 := (diff(theta(eta), eta, eta))/Pr+f(eta)*(diff(theta(eta), eta))-2*(diff(f(eta), eta))*theta(eta) = 0;

Pr := 1

M := 1

S := 0

epsilon := 1

blt := 10

bcs1 := f(0) = S, (D(f))(0) = epsilon, (D(f))(blt) = 0;

bcs2 := theta(0) = 1, theta(blt) = 0;

L := [0, .2, .4, .6, .8, 1.2];

for k to 6 do R := dsolve(eval({Eq1, Eq2, bcs1, bcs2}, B = L[k]), [f(eta), theta(eta)], numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]); Y1 || k := rhs(R[5]); Y2 || k := -rhs(R[6]) end do:

print([(X2 || (1 .. 6))(0)])

Good day,

How can this be corrected ''Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging'' see the worksheet here VT.mw

Hi,

I am tring to  solve a set of boundary layer equations with boundary conditions using Runge kutta Felbergh 45. When I executed the file,  the following message appear " Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging". Can someone help me on this matter?

 

Hello guys

I have a coupled linear differentional equation which are in the 4th order. they are shown in the below:

P:=phi(x):
Q:=psi(x):

eq1:=a11*diff(P,x,x,x,x)+a22*diff(P,x,x)+a33*P+a44*diff(Q,x,x)+a55*Q:
eq2:=a44*diff(P,x,x)+a55*P+a66*diff(Q,x,x)+a77*Q:

eq1:=0:
eq2:=0:

The boundary values for this coupled equation are:
phi(a)=sigma1,phi(-a)=sigma1,diff(P,x)(a)=0,diff(P,x)(-a)=0,psi(a)=sigma2,psi(-a)=sigma2

Now consider:

a11:=6.36463*10^(-10):
a22:=-1.22734*10^(-9):
a33:=3.48604*10^(-10):
a44:=2.94881*10^(-11):
a55:=-5.24135*10^(-11):
a66:=-1.03829*10^(-9):
a77:=4.86344*10^(-10):
when I use dsolve for deriving a good answer in this equation, there are six real roots .How can I solve it with these boundary condition?

I need to extract phi(x) and psi(x) from this coupled equation.

Thanks

 

> restart;
> with(plots);
> Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-2*(diff(f(eta), eta))^2-M^2*(diff(f(eta), eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + f(eta) |----- |----- f(eta)||
\ deta \ deta \ deta /// \ deta \ deta //

2
/ d \ 2 / d \
- 2 |----- f(eta)| - M |----- f(eta)| = 0
\ deta / \ deta /
> Eq2 := 1+(4/3)*R*(diff(theta(eta), eta, eta))+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)) = 0;
4 / d / d \\
1 + - R |----- |----- theta(eta)||
3 \ deta \ deta //

/ / d \ / d \ \
+ Pr |f(eta) |----- theta(eta)| - |----- f(eta)| theta(eta)| = 0
\ \ deta / \ deta / /
> bcs1 := f(0) = S, (D(f))(0) = 1+L*G, (D(D(f)))(0) = .1, f(6) = 0;
f(0) = S, D(f)(0) = 1 + L G, @@(D, 2)(f)(0) = 0.1, f(6) = 0
> fixedparameter := [S = .1, M = .1];
[S = 0.1, M = 0.1]
> Eq3 := eval(Eq1, fixedparameter);
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + f(eta) |----- |----- f(eta)||
\ deta \ deta \ deta /// \ deta \ deta //

2
/ d \ / d \
- 2 |----- f(eta)| - 0.01 |----- f(eta)| = 0
\ deta / \ deta /
> fixedparameter := [R = .1, Pr = .7];
[R = 0.1, Pr = 0.7]
> Eq4 := eval(Eq2, fixedparameter);
/ d / d \\ / d \
1 + 0.1333333333 |----- |----- theta(eta)|| + 0.7 f(eta) |----- theta(eta)|
\ deta \ deta // \ deta /

/ d \
- 0.7 |----- f(eta)| theta(eta) = 0
\ deta /
> bcs2 := theta(0) = 1+T*B, (D(theta))(6) = B, theta(6) = 0;
theta(0) = 1 + T B, D(theta)(6) = B, theta(6) = 0

> T := .1; B := .1;
0.1
0.1
> L := [0., .1, .2, .3];
[0., 0.1, 0.2, 0.3]
> for k to 4 do R := dsolve(eval({Eq3, Eq4, bcs1, bcs2}, L = L[k]), [f(eta), theta(eta)], numeric, output = listprocedure); Y || k := rhs(R[2]); YL || k := rhs(R[3]) end do;
Error, (in dsolve/numeric/bvp/convertsys) too many boundary conditions: expected 6, got 7
> plot([YL || (1 .. 4)], 0 .. 6, 1 .. -.2, labels = [eta, diff(f(eta), eta)]);

 

Hi i have trouble with this equation to solve with maple please help me

with boundary condition :

 

how i solve above equation with maple?( there is function to solve this equation in maple ?

email :

sattar.dogonchi@yahoo.com

Good day,

What scheme does midrich method is using in solving BVP?

Thanks.

 

hi.i encountered this erroe  [Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system] with solving set of differential equation.please help me.thanks a lot  

dsys3 := {`1`*h1(theta)+`1`*(diff(h1(theta), theta, theta))+`1`*(diff(h2(theta), theta))+`1`*(diff(h2(theta), theta, theta, theta))+`1`*h3(theta)+`1`*(diff(h3(theta), theta, theta))+`1`*(diff(h1(theta), theta, theta, theta, theta)) = 0, `1`*h2(theta)+`1`*(diff(h2(theta), theta, theta, theta, theta))+`1`*(diff(h2(theta), theta, theta))+`1`*(diff(h1(theta), theta))+`1`*(diff(h1(theta), theta, theta, theta))+`1`*(diff(h3(theta), theta))+`1`*(diff(h3(theta), theta, theta, theta)) = 0, h3(theta)^5*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h3(theta), theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h3(theta), theta, theta, theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h1(theta)*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h1(theta), theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h2(theta), theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h2(theta), theta, theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h3(theta)^4*(diff(h2(theta), theta, theta, theta, theta, theta, theta))*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)-beta*h3(theta)^3*`1`-chi*ln(h3(theta))^2*`1`/kappa-chi*`1`/kappa-2*chi*ln(h3(theta))*`1`/kappa = 0, h1(0) = 0, h1(1) = 0, h2(0) = 0, h2(1) = 0, h3(0) = 1, h3(1) = 1, ((D@@1)(h1))(0) = 0, ((D@@1)(h1))(1) = 0, ((D@@1)(h2))(0) = 0, ((D@@1)(h2))(1) = 0, ((D@@1)(h3))(0) = 0, ((D@@1)(h3))(1) = 0, ((D@@2)(h3))(0) = 0, ((D@@2)(h3))(1) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 600, numeric, output = listprocedure);
%;
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

i am trying to solve 6 ODE with boundary condition


restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


Download hydro.mw

restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


then i get this error

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

i dont know where i need to change after view it one by one..

Download hydro.mw

Dear Sirs,

I actually rigoruos to know what is the algorithm of BVP[midrich]? how it can obtain the solution of ODE with singularities?

 

Did anyone introduce a reference about the algorithm like this?

Thanks for your attention in advance

Amir

Hi,

i wrote the following code

restart:
zet:=0.5:
rhop:=3880;
rhobf:=998.2;
cp:=773;
cbf:=4182;

eq1 := diff(u(eta), eta, eta)+0.133762025280e-2/(0.993000000000e-3+0.388362300000e-1*phi(eta)+.530162700000*phi(eta)^2)+(1/(eta-1)+(0.388362300000e-1+1.06032540000*phi(eta))*(diff(phi(eta), eta))/(0.993000000000e-3+0.388362300000e-1*phi(eta)+.530162700000*phi(eta)^2))*(diff(u(eta), eta));
eq2 := diff(T(eta), eta, eta)+(.63267672*((2.66666666666*(-1.1752324*10^6*phi(eta)+4.1744724*10^6))*u(eta)/p2+7.04876575828*(diff(phi(eta), eta))-(1.58058605349*(.597+4.45959*phi(eta)))*(diff(T(eta), eta))/(1-eta)))/(.597+4.45959*phi(eta));
eq3 := diff(phi(eta), eta)-5.00000000000*phi(eta)*(diff(T(eta), eta));
p:=proc(pp2) if not type([pp2],list(numeric)) then return 'procname(_passed)' end if:

res := dsolve({eq1=0,subs(p2=pp2,eq2)=0,eq3=0,u(0)=0,u(1-zet)=0,phi(0)=0.008,T(0)=0,D(T)(0)=1}, numeric);
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)]));
res(parameters=[pp2]);
evalf(2/(1-zet^2)*Int((1-eta)*(F1(eta)*rhop+(1-F1(eta))*rhobf)*( F1(eta)*rhop*cp+(1-F1(eta))*rhobf*cbf )/(F1(eta)*rhop+(1-F1(eta))*rhobf)*F0(eta),eta=0..1-zet))-pp2
end proc;

fsolve(p(pp2)=0,pp2=(20000)..(8000000));

 

it has an error and i cannot find that. would you please help me?

 

thanks

1 2 Page 1 of 2