Items tagged with complex complex Tagged Items Feed

I notice that when I tried to factor the polynomial

x^3+x^2+2*x+1 I did not get the rational roots of the polynomial, then I tried using synthetic division to solve for the roots but I could not find a root. So I believe that the roots of the polynomial equation are complex numbers...

How could I use synthetic division to find the rational roots of this integral so that I could do a Partial Fraction Decomposition for the integral...

Hello everybody,

I want to find all of roots of the complex variables functions in two ways.

(1) find the value which can make the function equals 0

(2) find the real value and imaginary value which make real part and imaginary part of function equal 0

(I know answers of these two case is not equal completely.)

 

The function is a non-linear function, including sin, cos and Bessel function, such as:

 


And, I used Analytic and fsolve to do case (1) and (2), but failure. The follow result is how I tried to find the real value answer:

 

It seems that both of two commands can only find some of roots. 

How to find all of roots of these cases? The related .mw file is attached.

Cannot_find_all_of_roots.mw

 

Thanks a lot.

 

t := exp(2*(I*Pi*(1/11)))

u := t^10*a[10]+t^9*a[9]+t^8*a[8]+t^7*a[7]+t^6*a[6]+t^5*a[5]+t^4*a[4]+t^3*a[3]+t^2*a[2]+t*a[1]+a[0]

 

How can get maple to simplify expressions like u^3+u^2-1 so that the exponents are between 2*(I*Pi*(1/11)) and 1.

Essentially it keeps outputting things like exp(2*(I*Pi*(1/11)))^12 and not simplifying it as it is a root of unity

Ok so i have a matrix M filled with complex roots of unity. I want to execute the following code but it seems to be failing to do so correctly

t:=exp(2 Pi I/11);

m := (i, j) -> M[(i mod 11)+1, (j mod 11)+1] ;  

mu :=(i,j)->(add(add(add(a[k]*a[m]*a[n]*t^(m)*m((i+k-m),(j+n-m))),n=0..10),m=0..10),k=0..10));

 

Something is wrong with my indexing of the matrix . or when the mod procs.

Hello every one,

I had a 3 equations with 3 unknown (X,Y,Z, conjugate(Y),conjugate(Z))

this is the code:

solve( {ao*x + a1*y + conjugate(a1)*conjugate(y)+a2*z+conjugate(a2)*conjugate(z) = 0.5, conjugate(a1)*x + bo*y + conjugate(a2)*conjugate(y)+a1*z = 0, 10*x + 10*y/4 + 10*z = 10}, {x, y, z});

where the coefficients are complex numbers

Is thee any simple way to solve it

thanks

hi all.

I have wrore the following program for optimization with bernstein and block pulse hybrid functions.

the program have some errors which i can't understand.

Bernestien1.mws

restart:

alias(C=binomial):
with(LinearAlgebra):
macro(LA= LinearAlgebra):


HybrFunc:=proc(N, M,  tj)               # N=Number of subintervals,  M=Number of functions in subintervals
 
local B, n, m;

global b;

for n from 1 to N do
for m from 0 to M-1 do

B := (i,m,t) -> C(m,i)*(1-t)^(m-i)*t^i:

b[n,m]:=unapply(piecewise(t>=(n-1)*tj/N and t<n*tj/N, B(m,2,N*t-(n-1)*tj), 0), t):
 od:od:


Array(1..N, 0..M-1, (n,m)->b[n,m](t)):

#convert(%,vector);
end proc:

HybrFunc(3, 3, 1);




                                       # End Of Definition
 
g2(t):=t;            #*exp(t-1):                      # Any other function can be replaced here
    

g1(t):=add(add(c[n,m]*b[n,m](t), m=0..2), n=1..3);
Optimization[Minimize](sqrt(int((g2(t)-g1(t))^2, t=0.. 1)));
assign(op(%[2]));
plot([g2(t),g1(t)], t=0..1, 0..5, color=[blue,red],thickness=[1,3],discont, scaling=constrained);

Array(1 .. 3, 0 .. 2, {(1, 0) = piecewise(0 <= t and t < 1/3, (1-3*t)^2, 0), (1, 1) = piecewise(0 <= t and t < 1/3, (6*(1-3*t))*t, 0), (1, 2) = piecewise(0 <= t and t < 1/3, 9*t^2, 0), (2, 0) = piecewise(1/3 <= t and t < 2/3, (2-3*t)^2, 0), (2, 1) = piecewise(1/3 <= t and t < 2/3, (2*(2-3*t))*(3*t-1), 0), (2, 2) = piecewise(1/3 <= t and t < 2/3, (3*t-1)^2, 0), (3, 0) = piecewise(2/3 <= t and t < 1, (3-3*t)^2, 0), (3, 1) = piecewise(2/3 <= t and t < 1, (2*(3-3*t))*(3*t-2), 0), (3, 2) = piecewise(2/3 <= t and t < 1, (3*t-2)^2, 0)}, datatype = anything, storage = rectangular, order = Fortran_order)

g2(t) := t

"g1(t):=c[1,0] ({[[(1-3 t)^2,0<=t and t<1/3],[0,otherwise]])+c[1,1] ({[[6 (1-3 t) t,0<=t and t<1/3],[0,otherwise]])+c[1,2] ({[[9 t^2,0<=t and t<1/3],[0,otherwise]])+c[2,0] ({[[(2-3 t)^2,1/3<=t and t<2/3],[0,otherwise]])+c[2,1] ({[[2 (2-3 t) (3 t-1),1/3<=t and t<2/3],[0,otherwise]])+c[2,2] ({[[(3 t-1)^2,1/3<=t and t<2/3],[0,otherwise]])+c[3,0] ({[[(3-3 t)^2,2/3<=t and t<1],[0,otherwise]])+c[3,1] ({[[2 (3-3 t) (3 t-2),2/3<=t and t<1],[0,otherwise]])+c[3,2] ({[[(3 t-2)^2,2/3<=t and t<1],[0,otherwise]])"

Error, (in Optimization:-NLPSolve) complex value encountered

Error, invalid left hand side in assignment

(1)



Download Bernestien1.mws

 I'll be so grateful if any one can help me.

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

AOA. I want to plot the graph of the following function 

 

A new generalized complex representation of Euler gamma function in terms of Dirac delta function, which is

GAMMA(s) = 2*Pi*(sum((-1)^n*Dirac(s+n)/factorial(n), n = 0 .. infinity))

where*s = sigma+i*tau

for differenet values of parameters

 

Pleaz i nees help i have probleme withe singularity

restart; with(plots)

Paramétres

 

NULL

``

mb := 5;

5

 

2

 

(1/3)*a*b^3

 

0.4906250000e-1*d

 

.2

 

.4

 

1.2

 

.43

 

9.81

 

1

 

5

 

.5

 

1

(1.1)

``

``

Equation suivant x :

 

``

eq1 := (mp+mb)*(diff(x(t), `$`(t, 2)))+mp*(d+l)*(diff(theta(t), `$`(t, 2)))+mp*l*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2*theta(t)+l*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t)))+1000*Am*g*sin(omega*t-k*x(t))*(1+theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(x(t), t), t))+1.2*(diff(diff(theta(t), t), t))+.4*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2*theta(t)+.4*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t))+11772.000*sin(.43*t-x(t))*(1+theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sinh(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(2.1)

``

Equation suivant z :

 

``

eq2 := (mp+mb)*(diff(z(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(theta(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2+l*(diff(theta(t), t)+diff(alpha(t), t))^2)-g*(mp+mb)+1000*g*a*z(t)+1000*g*a*b*(1/2)+1000*Am*g*sin(omega*t-k*x(t))*(1-theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sin(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(z(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(theta(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2+.4*(diff(theta(t), t)+diff(alpha(t), t))^2+2383.830+4905.000*z(t)+11772.000*sin(.43*t-x(t))*(1-theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sin(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(3.1)

``

Equation suivant y :

 

``

eq3 := mp*(d+l)*(diff(x(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(z(t), `$`(t, 2)))+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l)*(diff(theta(t), `$`(t, 2)))+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*(diff(alpha(t), `$`(t, 2)))-mp*alpha(t)*(l*d*(diff(theta(t), t))^2-l*d*(diff(theta(t), t)+diff(alpha(t), t))^2)+mp*g*l*(alpha(t)+theta(t))+mp*g*d*theta(t)+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)*z(t)+1000*g*a(theta(t))^9*(1/12)+(1000*g*a*b^2*(1/4))*theta(t)-1000*Am*g*sin(omega*t-k*x(t))*((z(t)-(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)+1000*Am*g*sin(omega*t-k*x(t))*((z(t)+(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)-(1000*g*z(t)*(1/2)+1000*g*b*(1/4))*(2*a*x(t)+a*b*theta(t))+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)^2*z(t)+(1000*g*a^3*(1/12))*theta(t)+(1000*g*a*b^2*(1/4))*theta(t)^3+(k*theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))))-k*theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))-cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))+cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t)))))/k^2 = 0;

1.2*(diff(diff(x(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(z(t), t), t))+.9062916667*(diff(diff(theta(t), t), t))+(0.9962500000e-1+.16*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-2*alpha(t)*(0.8e-1*(diff(theta(t), t))^2-0.8e-1*(diff(theta(t), t)+diff(alpha(t), t))^2)+3.924*alpha(t)+1340.209500*theta(t)+9810.000*theta(t)*z(t)^2+4905.000*theta(t)*z(t)+1.596679687-11772.000*sin(.43*t-x(t))*(-(z(t)-.2500000000*theta(t)+1/2)*sinh(-11/2-z(t)+.2500000000*theta(t))-cosh(-11/2-z(t)+.2500000000*theta(t)))/cosh(5)+11772.000*sin(.43*t-x(t))*((z(t)+.2500000000*theta(t)+1/2)*sinh(11/2+z(t)+.2500000000*theta(t))-cosh(11/2+z(t)+.2500000000*theta(t)))/cosh(5)-(4905.00*z(t)+2452.50)*(1.0*x(t)+.5*theta(t))+4905.000*theta(t)^2*z(t)+1226.250*theta(t)^3-theta(t)*(x(t)-.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t)))+theta(t)*(x(t)+.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))-cosh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))+cosh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t))) = 0

(4.1)

NULL

``

Equation suivant y

 

``

eq4 := mp*l*(diff(x(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(z(t), `$`(t, 2)))+(d*l*mp+l^2*mp+Ip)*(diff(theta(t), `$`(t, 2)))+(l^2*mp+Ip)*(diff(alpha(t), `$`(t, 2)))-9.81*mp*l*(alpha(t)+theta(t))-l*d*mp*(diff(theta(t), `$`(t, 1)))^2*alpha(t) = 0;

.4*(diff(diff(x(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+.2596250000*(diff(diff(theta(t), t), t))+0.9962500000e-1*(diff(diff(alpha(t), t), t))-3.924*alpha(t)-3.924*theta(t)-.16*(diff(theta(t), t))^2*alpha(t) = 0

(5.1)

``

Résolution :

 

NULL

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(6.1)

if theta(t) <> 0 then
 solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0):
 odeplot(solution, [[t, x(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, z(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, theta(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, alpha(t)]], t = 0 .. 100, thickness = 2);
 #odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..100, thickness=2);
 end ;

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.14822202628077855e-4, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = 17.65307013401197, (3) = .0, (4) = -7.093237546136753, (5) = .0, (6) = .20723671453704962, (7) = .0, (8) = -340.5471428571427}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

Warning, cannot evaluate the solution further right of .33009777, probably a singularity

 

 

 

``

``


thank you !

Download DL.mw

Let be given the complex number z  satisfying condition abs(z+3-2I)=3. I want to find the set of points representing the complex number w, knowing that w - z = 1 +3I. I tried

Restart:
assume(a::real, b::real,x::real, y::real);
z:=x+y*I;
w:=a+b*I;
abs(w-1-3*I+3-2*I)=3;

 

Edit

Restart:
assume(a::real, b::real,x::real, y::real);
Set:=abs(z+3-2*I):
w:=x+y*I;
sol:=solve(w - z =1+3*I,{z});
z1:=subs(sol,Set);
A:=abs(z1);
map(x->x^2,A=3);

Hi all,

my problem concerns operation with complex number in Maple 18. The issue is the following:

i define this complex: c:=a+i*b

then i compute the square: sort(evalc(c^2))

and the output is: a^2+2*i*ab-b^2

So, how can i obtain an output like the following?  a^2-b^2b^2 +a*i*ab

In other word i want an output where the real part precede the complex part.

thank you in advance :)

Hi all,

 

As we know that the differential of conjugate(z) is non-analytic.

But it seems that the diff gives the solution about the complex function conjugate(z)

 

What does it mean?

I am trying to solve an RLC circuit that uses sinusoidal wave generated voltage supply and I do not understand how to use a complex Matrices. Normally the Matrices of Constant coefflcients is one of a Real Number valued Matrix, but the Phase on the RLC circuit uses a Complex variable, and the elements of the Matrix cannot by combined as real number values because the current in the Mesh Current Method for RLC Sinusoidal Phase Circuit Analysis uses a Vector as the answer for the current...

My Question is How do I set up a Complex Matrix and solve for the determinant?

Can someone help me to solve system of equations please. I have a system of 8 complex valued equations, with 8 unknowns: _C1,_C2........_C8

Equation system looks like:

eq_system:={ -3.248046797 10 _C1 + 1.773373463 10 _C2 + (2.182313824 10 - 9.987524076 10 I) _C3 + 1.773373463 10 _C4 = -7.389056097 10 _C2- 7.389056097 10 _C4+ (4.161468365 10 + 9.092974265 10 I)_C3,

............}  its only 1st equation, others are similar.

It looks rather simple though I am not able to solve it with solve or fsolve commands. What I'm doing wrong?

solve(eq_system,{_C1,_C2,_C3,_C4,_C5,_C6,_C7,_C8});

Hi, guys and happy eastern to all! :)

I have a realy big problem. I have to do beziercurves in 3d plots.

I can´t plot it in 3d, something wrong with the plot (complex). Can anybody pls help me?! It´s very important to me, thanks! :)

AOA... There are three question

1. I want to convert exp(Iota*theta) into ternometric function i.e., 

exp(Iota*theta) = cos(theta)+Iota*sin(theta)

Is there any comand pl help...

2. Also i want to rationalize the complex number...

3. I want to seprate real and imaginary parts of a comaplex numbers

 

 

1 2 3 4 5 6 7 Last Page 1 of 25