Items tagged with complexplot

Feed
complexpoint run a long time
there is no option numpoints in complexplot, how to fasten it?
 
Lee := (-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
complexplot(Lee, x = 0 .. 1);
Lee := Re(-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
plot(Lee, x = 0 .. 2, numpoints = 5);
Lee := Im(-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
plot(Lee, x = 0 .. 2, numpoints = 5);

I want to plot a curve of the form |z*e^(1-z)| = 1 (the Szego curve). I am not sure how to call complexplot() to make this happen. Just calling complexplot(abs(z*exp(1-z)) = 1) does not work, and I don't know what else to specify. Any help?

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

For the life of me I can not get maple to plot this equation.  I have poured over various resources and it simply isn't working.  I have gone so far as to use SIMPLIFY and even  Re(circuitSix) and Im(circuitSix) yet still get only errors.  Any insight would be appreciated.


can anybody help me..? why my graph not come out? Is that any mistake in my coding?

restart

y := x^2-x*(exp(I*k*`Δx`)+exp(-I*k*`Δx`)-m^2+m^2*((4*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3))*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3)*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3))*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3)/(epsilon*((((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3)*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3))*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3+((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3))+(((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3)*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3))*((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3+((1^2-2)*cosh(1+1)-4*sinh(1+1)+1^6*cosh(1+1)^3)))))+1;

x^2-x*(exp(I*k*`Δx`)+exp(-I*k*`Δx`)-m^2+2*m^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(epsilon*(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3)))+1

(1)

subs(m = 1-exp(-m), %);

x^2-x*(exp(I*k*`Δx`)+exp(-I*k*`Δx`)-(1-exp(-m))^2+2*(1-exp(-m))^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(epsilon*(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3)))+1

(2)

subs(epsilon = .17882484, %);

x^2-x*(exp(I*k*`Δx`)+exp(-I*k*`Δx`)-(1-exp(-m))^2+11.18412856*(1-exp(-m))^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1

(3)

subs(k = n*Pi, %);

x^2-x*(exp(I*n*Pi*`Δx`)+exp(-I*n*Pi*`Δx`)-(1-exp(-m))^2+11.18412856*(1-exp(-m))^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1

(4)

subs(`Δx` = m, %);

x^2-x*(exp(I*n*Pi*m)+exp(-I*n*Pi*m)-(1-exp(-m))^2+11.18412856*(1-exp(-m))^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1

(5)

subs(m = 0.1e-2, %);

x^2-x*(exp((0.1e-2*I)*n*Pi)+exp(-(0.1e-2*I)*n*Pi)-(1-exp(-0.1e-2))^2+11.18412856*(1-exp(-0.1e-2))^2*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1

(6)

j := subs(n = 1, %);

x^2-x*(exp((0.1e-2*I)*Pi)+exp(-(0.1e-2*I)*Pi)-0.9990006498e-6+0.1117295170e-4*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1

(7)

complexplot3d(x*j, x = -2-I .. 2+I);````

complexplot3d(x*(x^2-x*(exp((0.1e-2*I)*Pi)+exp(-(0.1e-2*I)*Pi)-0.9990006498e-6+0.1117295170e-4*(-cosh(2)-4*sinh(2)+cosh(2)^3)^2/(-2*cosh(2)-8*sinh(2)+2*cosh(2)^3))+1), x = -2-I .. 2+I)

(8)

a := fsolve(x*j, x);

0., .9865070072, 1.013677544

(9)

b := fsolve(x*j, x = 1);

0., .9865070072, 1.013677544

(10)

with(plots):

complexplot({a, b}, numpoints = 100, color = green, filled = true, title = "Stability Region");

 

``

``

``


Download Stability_1.mw

Can somebody help me on this problem?

``

restart

y := x^2-x*(2*cos(theta)-m^2+m^2*((4*1^2*cos(1)^2*(1^2*cos(1)^2))*1^2*cos(1)^2*(1^2*cos(1)^2))/(epsilon*((1^2*cos(1)^2*(1^2*cos(1)^2))*(1^2*cos(1)^2+1^2*cos(1)^2)+(1^2*cos(1)^2*(1^2*cos(1)^2))*(1^2*cos(1)^2+1^2*cos(1)^2))))+1;

x^2-x*(2*cos(theta)-m^2+m^2*cos(1)^2/epsilon)+1

(1)

subs(m = 1-exp(-m), %);

x^2-x*(2*cos(theta)-(1-exp(-m))^2+(1-exp(-m))^2*cos(1)^2/epsilon)+1

(2)

subs(m = 0.1e-2, %);

x^2-x*(2*cos(theta)-(1-exp(-0.1e-2))^2+(1-exp(-0.1e-2))^2*cos(1)^2/epsilon)+1

(3)

subs(epsilon = .85214520, %);

x^2-x*(2*cos(theta)-0.9990006498e-6+0.1172336182e-5*cos(1)^2)+1

(4)

subs(theta = 2*Pi, %);

x^2-x*(2*cos(2*Pi)-0.9990006498e-6+0.1172336182e-5*cos(1)^2)+1

(5)

ans := solve(%, x);

.9999996716-0.8104096482e-3*I, .9999996716+0.8104096482e-3*I

(6)

m := ans[1];

.9999996716-0.8104096482e-3*I

(7)

n := ans[2];

.9999996716+0.8104096482e-3*I

(8)

with(plots):

complexplot({r1, r2}, numpoints = 100, color = green, filled = true, title = "Stability Region")

Error, (in plots/complexplot) invalid arguments

 

``

``


Download erni_stability_try.mw

i want to plot the graph based on this equation to know the stability of this equation :

y := A*(1/x+x*exp(-2*sqrt(-1)*b))+4*sin(h)^2*(2*exp(-sqrt(-1)*b)-3*sin(h)^2*x^(-sin(h))*exp(sqrt(-1)*b*(-sin(h)-1))+3*x^(-sin(h))*exp(sqrt(-1)*b*(-sin(h)-1)))/(3*(1-r))-exp(-2*sqrt(-1)*b)/x-x;

with A = (1+r)/(1-r), r = (1/3)*sin(h)^2, b = m*Pi*h, m = 1, h=0.05

can somebody help me..??

Help me with this:

I have a differential equation:  s:= diff(h(t),t) = -0.1738137398e-2/sqrt(2.8-h(t))

Solution is: h(t) = 14/5-(1/100000000)*2607206097^(2/3)*t^(2/3), h(t) = 14/5-(1/100000000)*(-(1/2)*2607206097^(1/3)*t^(1/3)-(1/2*I)*sqrt(3)*2607206097^(1/3)*t^(1/3))^2, h(t) = 14/5-(1/100000000)*(-(1/2)*2607206097^(1/3)*t^(1/3)+(1/2*I)*sqrt(3)*2607206097^(1/3)*t^(1/3))^2

And i have to need a plot... so i use complexplot and recive a mesage:

Error, (in plots:-complexplot) invalid input: `plots/complexplot` expects its 2nd argument, r, to be of type {range, name = range}, but received h(t) = 14/5-(1/100000000)*(-(1/2)*2607206097^(1/3)*t^(1/3)-((1/2)*I)*3^(1/2)*2607206097^(1/3)*t^(1/3))^2

Help me if you can!! Thank you so much!!! 

I've used fsolve in Maple 6 to find the roots (real and complex) of a polynomial.  I'd like to create a plot showing the location of those roots in the complex plane.  How can I do this?

I have a problem related to solving the complex equation of dispersion relation.

In the plots some modes are missed. I dont know whay?

Is possible to help me? (m0^2<0).

restart;
 with(plots):
 rrr:=proc()
 local ce,c0,ve,va,cte,ct,me,m0,DT,n,EQ,i;
 ce:=6.2;c0:=0.25;ve:=5.25;ck:=1.06;ct:=0.243; cte:=2.515;
 me:=sqrt(((ce^2-v^2)*(ve^2-v^2)/((ce^2+ve^2)*(cte^2-v^2))));
 m0:=sqrt((c0^2-v^2)*(1-v^2)/((c0^2+1)*(ct^2-v^2)));

Page 1 of 1