Items tagged with differential_equation differential_equation Tagged Items Feed

Hello guys

I have a coupled linear differentional equation which are in the 4th order. they are shown in the below:

P:=phi(x):
Q:=psi(x):

eq1:=a11*diff(P,x,x,x,x)+a22*diff(P,x,x)+a33*P+a44*diff(Q,x,x)+a55*Q:
eq2:=a44*diff(P,x,x)+a55*P+a66*diff(Q,x,x)+a77*Q:

eq1:=0:
eq2:=0:

The boundary values for this coupled equation are:
phi(a)=sigma1,phi(-a)=sigma1,diff(P,x)(a)=0,diff(P,x)(-a)=0,psi(a)=sigma2,psi(-a)=sigma2

Now consider:

a11:=6.36463*10^(-10):
a22:=-1.22734*10^(-9):
a33:=3.48604*10^(-10):
a44:=2.94881*10^(-11):
a55:=-5.24135*10^(-11):
a66:=-1.03829*10^(-9):
a77:=4.86344*10^(-10):
when I use dsolve for deriving a good answer in this equation, there are six real roots .How can I solve it with these boundary condition?

I need to extract phi(x) and psi(x) from this coupled equation.

Thanks

 

Hi there,
I have the following set of equation which I want to solve using Maple's dsolve command:

d[V(t)*C(t)]/dt = G - K *C(t)
dV(t)/dt = alpha - beta

where V is the volume, C is the concentration, and t is the time variable. G, K, alpha and beta are constant parameters of the problem.


The solution for V(t) is easy to find operating the second equation:
V(t) = V_0 + (alpha - beta)*t

But solving for C(t) is a bit harder.

I would like Maple to solve the system, but the result I get does not really make sense to me. My attempt is this: Maple_artificial_kidney.mw

Any thoughts about how to introduce the equations successfully?

Thank you,
jon

Hallo. I'm solving a initial value problem for system of 7 ODE:

dsn := dsolve({expand(maineq[1, 1]), expand(maineq[1, 2]), expand(maineq[1, 3]), expand(maineq[1, 4]), expand(maineq[1, 5]), expand(maineq[1, 6]), expand(maineq[1, 7]), T(0) = .5, u(0) = u0, Y[1](0) = .8, Y[2](0) = .2, Y[3](0) = 0, Y[4](0) = 0, Y[5](0) = 0}, numeric, method = lsode[backfull])

 

Is there easy way how to plot result?

 

 

 

ds(t)/dt = a*s(t)*(1 - s(t) - m(t)) - b*s(t) 

dm(t)/dt = c*s(t) - d*m(t)

 

need to find steady state of this system ( finding this simultaneously) in maple 

 

How can you do it? 

hello , to solve a differential euqations , maple gave me this error. please help me.

 

TG.mw

hello dear freinds

im new comer in maple.

i want to find  particular solution of an ode by following code:

ode := diff(u[1](t), t, t)+u[1](t) = -(1/4)*a^3*cos(3*beta[0]+3*t)-(3/4)*a^3*cos(beta[0]+t)

m := combine(convert(particularsol(ode), trig))

but maple solution is : m := u[1](t) = (81/32)*a^3*cos(-3*beta[0]+t)-(81/16)*a^3*cos(3*beta[0]+t)-(3/8)*a^3*t*sin(beta[0]+t)+(3/16)*a^3*cos(-beta[0]+t)-(27/16)*a^3*cos(beta[0]+t)+(1/32)*a^3*cos(3*beta[0]+3*t)

but  particular solution is :

u[1](t) = -(3/8)*a^3*t*sin(beta[0]+t)+(1/32)*a^3*cos(3*beta[0]+3*t)

is there any idear for finding the solution?

thanks in advance

Hey, how is can i see all the steps in maple? I would specially like to know it for differential equations.

For example we could use this one:

dl := 3*(diff(y(t), t, t))+6*(diff(y(t), t))+4*y(t) = 0 

Hello,

 

could you help me solve this error ? I don't understand what it means.

 


> eq3:=diff(x(t),t,t)+Gamma*diff(x(t),t)+omega[0]^2*(x(t)-(diff(x(t),t,t)+Gamma*diff(x(t),t)+omega[0]^2*x(t)+omega[0]^2*X[0])/omega[0]^2) = -omega[0]^2*X[0]:
> dsolve(eq3);
Warning, it is required that the numerator of the given ODE depends on the highest derivative. Returning NULL.

 

Thanks.

Dear all,

I am trying to find the intial velocity of a ball that is shot under an angle while only the start and end coordinates are given. The air resistance should also be taken into account. 

In order to do that I have build the following Maple sheet:

Assignment_question_1.mw 

I have used two differential equations that both include the variables v0 and t, and then try to solve them. Only I receive an answer in the form of RootOf, which I cannot remove with for example allvalues. 

I have been working for quite a long time on this but I am not coming any further, so is there anyone who can find what I am doing wrong/what I should be doing else? Or maybe my whole approach is not right?

Even a small step in the right direction would be appreciated a lot!

Thanks in advance,

Elise

Please, how do i compute,solve and derive d' Alembert wave formula with maple since wave=How do i derive d'Alembert formula using maple and also how to solve any wave problems eg IC u(x,0)=1/2e^-x^2 and ut(x,0)-e^-x^2 when c=4

I want to get numerical solution of the Eqs.ode(see the folowlling ode and ibc)in Maple.However,when i run the following procedure,it prompts an error "Error, (in dsolve/numeric/bvp) cannot determine a suitable initial profile, please specify an approximate initial solution". How to solve the issue? Please help me.


restart:
n := 1.4; phi := 1; beta := .6931; psi := 1

> restart;
> n := 1.4; phi := 1; beta := .6931; psi := 1;

> s := proc (x) options operator, arrow; evalf(1+(phi*exp(beta*psi)*h(x))^n) end proc;

> Y := proc (x) options operator, arrow; evalf(f-(1/2-(1/2)/n)*ln(s(x))+2*ln(1-(1-s(x))^(-1+1/n))) end proc;


> ode := diff(h(x), `$`(x, 2))+(diff(Y(x), x))*(diff(h(x), x)+1) = 0;


> ibc := h(0) = 0, ((D(h))(10)+1)*s(10)^(-(1-1/n)*(1/2))*(1-(1-1/s(10))^(1-1/n))^2 = 0;

> p := dsolve({ibc, ode}, numeric);
Error, (in dsolve/numeric/bvp) cannot determine a suitable initial profile, please specify an approximate initial solution
>

solve Differential equation "a-y=y' bc" use maple 17

the result is y(x)=a+_C1e^-(1/bc)

but the correct result  isn't y(x)=a-_C1e^-(1/bc) ?

Thank you in advance for your help

 

please help me to find an analytical approach to the below equation:

> ode3 := diff(n(t), t)+(1/2)*(-(3.707186000*(0.815e-1*(diff(n(t), t, t))+diff(n(t), t)))/(0.815e-1*(diff(n(t), t))+n(t))^(3/2)-(.1428*(1+0.714e-1*n(t)))*(diff(n(t), t)))/sqrt(7.414372/sqrt(0.815e-1*(diff(n(t), t))+n(t))-(1+0.714e-1*n(t))^2)+n(t)+sqrt(7.414372/sqrt(0.815e-1*(diff(n(t), t))+n(t))-(1+0.714e-1*n(t))^2)-(2.518891688*(1+.3570*n(t)))*sqrt(0.815e-1*(diff(n(t), t))+n(t)) = 0;
                                                                           /
                                                                           |
/ d      \                                 1                               |
|--- n(t)| + ------------------------------------------------------------- |
\ dt     /                                                           (1/2) |
               /           7.414372                                2\      |
             2 |------------------------------- - (1 + 0.0714 n(t)) |      |
               |                          (1/2)                     |      \
               |/       / d      \       \                          |       
               ||0.0815 |--- n(t)| + n(t)|                          |       
               \\       \ dt     /       /                          /       
              /       / d  / d      \\   / d      \\
  3.707186000 |0.0815 |--- |--- n(t)|| + |--- n(t)||
              \       \ dt \ dt     //   \ dt     //
- --------------------------------------------------
                                     (3/2)          
           /       / d      \       \               
           |0.0815 |--- n(t)| + n(t)|               
           \       \ dt     /       /               

                                        \       
                                        |       
                              / d      \|       
   - 0.1428 (1 + 0.0714 n(t)) |--- n(t)|| + n(t)
                              \ dt     /|       
                                        |       
                                        |       
                                        /       

                                                           (1/2)
     /           7.414372                                2\     
   + |------------------------------- - (1 + 0.0714 n(t)) |     
     |                          (1/2)                     |     
     |/       / d      \       \                          |     
     ||0.0815 |--- n(t)| + n(t)|                          |     
     \\       \ dt     /       /                          /     

                                                             (1/2)    
                                   /       / d      \       \         
   - 2.518891688 (1 + 0.3570 n(t)) |0.0815 |--- n(t)| + n(t)|      = 0
                                   \       \ dt     /       /         
> ics := n(0) = 0, (D(n))(0) = 674.5142595;


thanks and regards

louiza

 

AOA... Dears! When i solve the following differential equations

-(diff(lambda(s), s))-2*(diff(lambda(s), s, s))-(diff(lambda(s), s, s, s)) = 0

i got

lambda(s) = _C1+_C2*exp(-s)+_C3*exp(-s)*s

 here _C1,_C2 and _C3 are constant of intergration but i want the constant of integration of the following type

C[1],C[2] and C[3]

due to some reson pl help

1 2 3 4 5 6 Page 1 of 6