Items tagged with dsolve dsolve Tagged Items Feed

I have few ode's which are solved by dsolve, but I am not able to get a zero from odetest(sol,ode). I tried the implicit option on the one which returns implicit solution, but I still do not get zero. I tried useInt as well.

Is there something else to do to verify the solution? My understanding is that if Maple returns a solution from dsolve, there there should be a way to get odetest() to verify the solution, but I could be wrong. Here are few examples, I have more if needed. This is Maple 18.01 on windows 7

restart;
MathematicalFunctions:-Version();
#       "C:\Program Files\Maple 18\lib\DEsAndMathematicalFunctions18.mla", `2014, July 25, 21:22 hours`
unassign(`print/ODESolStruc`):
ode1:=diff(y(x), x)+2*tan(y(x))*tan(x)-1:
ode2:=2*(diff(y(x), x))-3*y(x)^2-4*a*y(x)-b-c*exp(-2*a*x):
ode3:=(x^2+1)*(diff(y(x), x))+(y(x)^2+1)*(2*x*y(x)-1):
ode4:=x^7*(diff(y(x), x))+(2*(x^2+1))*y(x)^3+5*x^3*y(x)^2:
ode5:=(y(x)-x)*sqrt(x^2+1)*(diff(y(x), x))-a*sqrt((y(x)^2+1)^3):

sol1:=dsolve(ode1,y(x)):
sol2:=dsolve(ode2,y(x)):
sol3:=dsolve(ode3,y(x)):
sol4:=dsolve(ode4,y(x)):
sol5:=dsolve(ode5,y(x)):

odetest(sol1,ode1,implicit);  #not zero
odetest(sol2,ode2);             #not zero
odetest(sol3,ode3,implicit);  #not zero
odetest(sol4,ode4,implicit);  #not zero
odetest(sol5,ode5,implicit);  #not zero

I am going by the assumption that when Maple returns ODESolStruct as solution, then it means it could not solve the ODE. (example below)

My only complaint is that the syntax it uses for saying that the solution is ODESolStruct is not clear. I guess one has to look for & in the solution to know the result is ODEStruct.

http://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve%2fODESolStruc

Only when I convert the solution to string, then I can see the word "ODESolStruct" displayed.

My question is, how can I make maple display on the screen the word "ODESolStruct" in the solution, instead of using those "&" As that will make it more clear.

I am using worksheet on maple 18. Not document style. Here is an example:

restart;
ode:=diff(y(x),x$2)+a*exp(x)*sqrt(y(x));
sol:=dsolve(ode,y(x));


 The above was using 2D math display as default. If I use Maple notation as output I get:

----------------------------------------

restart:
ode:=diff(y(x),x$2)+a*exp(x)*sqrt(y(x)):
sol:=dsolve(ode,y(x));
sol := y(x) = `&where`(_a/exp(-2*(Int(_b(_a), _a))-2*_C1), [{diff(_b(_a), _a).......

-------------------------------------------

But now

convert(sol,string);
"y(x) = ODESolStruc(_a/exp(-2*Int(_b(_a),_a)-2*_C1),[{diff(_b(_a\ .............."

You can see now that the solution is ODESolStruct, but it is much more clear than the default solution above. But only when looking at the solution as string do I get it to show the word "ODESolStruct". 

Since odetest does not return zero, then maple did not solve it:

odetest(sol,ode);

btw, Compare the above to when Maple returns "DESol" structutre. In this case, it does now display on the screen the word "DESol":

restart;
ode:=diff(y(x), x, x)-y(x)*(a^2*x^(2*n)-1);
dsolve(ode,y(x));

Again, my question is:  Could I configure Maple to display in worksheet the solution using explicit ODESolStruct words instead of using "&" there to indicate more clearly the solution.

 

Maple 18.01, windows

restart;
ode:=2*a^2*y(x)-2*y(x)^3+3*a*(diff(y(x), x))+diff(y(x), x$2)=0;
dsolve(ode,y(x));

           returns y(x)=0

 

So does

ode:=2*a^2*y(x)-20*y(x)^3+3*a*(diff(y(x), x))+diff(y(x), x$2)=0;

ode:=2*a^2*y(x)-200*y(x)^3+3*a*(diff(y(x), x))+diff(y(x), x$2)=0;

ode:=2*a^2*y(x)-2000*y(x)^3+3*a*(diff(y(x), x))+diff(y(x), x$2)=0;

etc...

Is this a bug?

 

 

 

I am a problem with solve differential equation, please help me: THANKS 

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);

dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, numeric, output = array([0.]));

              Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead

****************FORMAT TWO ********************************************************

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);
dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, method = bvp[midrich], output = array([0.]));
%;
                                   Error, (in dsolve) too many levels of recursion

I DONT KNOW ABOUT THIS ERROR

PLEASE HELP ME

THANKS A LOT

 

question on DESol...

July 21 2014 nm 455

restart;
ode:=diff(y(x), x, x)-y(x)*(a^2*x^(2*n)-1);
dsolve(ode,y(x));

gives

     DESol({diff(_Y(x), x, x)+(-a^2*x^(2*n)+1)*_Y(x)}, {_Y(x)})

as answer. I read the help on DESol, but what does the above actually mean? Where is the solution of the ode? It just returned the ode back to me. Can I consider that Maple did not solve this ode in this case?

from help

"DESol is a data structure to represent the solution of a differential equation. It is to dsolve as RootOf is to solve."

 

 

restart:
Eq1:=r^2*diff(w(r),r$2)+r*diff(w(r),r$1)-r^2*G5*w(r)-P*r^3*G6-G7*r^3-G8*r^5+C1*r/G3=0;

res1:=dsolve(Eq1);

bcs:=D(w)(0)=0,w(h)=0;

res2:=(dsolve({Eq1,bcs},w(r)));

match(rhs(res2)=rhs(res1),r,s);

eval(_C2, s);

Any idea?

Thanks

Pleaz i nees help i have probleme withe singularity

restart; with(plots)

Paramétres

 

NULL

``

mb := 5;

5

 

2

 

(1/3)*a*b^3

 

0.4906250000e-1*d

 

.2

 

.4

 

1.2

 

.43

 

9.81

 

1

 

5

 

.5

 

1

(1.1)

``

``

Equation suivant x :

 

``

eq1 := (mp+mb)*(diff(x(t), `$`(t, 2)))+mp*(d+l)*(diff(theta(t), `$`(t, 2)))+mp*l*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2*theta(t)+l*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t)))+1000*Am*g*sin(omega*t-k*x(t))*(1+theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(x(t), t), t))+1.2*(diff(diff(theta(t), t), t))+.4*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2*theta(t)+.4*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t))+11772.000*sin(.43*t-x(t))*(1+theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sinh(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(2.1)

``

Equation suivant z :

 

``

eq2 := (mp+mb)*(diff(z(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(theta(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2+l*(diff(theta(t), t)+diff(alpha(t), t))^2)-g*(mp+mb)+1000*g*a*z(t)+1000*g*a*b*(1/2)+1000*Am*g*sin(omega*t-k*x(t))*(1-theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sin(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(z(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(theta(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2+.4*(diff(theta(t), t)+diff(alpha(t), t))^2+2383.830+4905.000*z(t)+11772.000*sin(.43*t-x(t))*(1-theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sin(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(3.1)

``

Equation suivant y :

 

``

eq3 := mp*(d+l)*(diff(x(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(z(t), `$`(t, 2)))+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l)*(diff(theta(t), `$`(t, 2)))+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*(diff(alpha(t), `$`(t, 2)))-mp*alpha(t)*(l*d*(diff(theta(t), t))^2-l*d*(diff(theta(t), t)+diff(alpha(t), t))^2)+mp*g*l*(alpha(t)+theta(t))+mp*g*d*theta(t)+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)*z(t)+1000*g*a(theta(t))^9*(1/12)+(1000*g*a*b^2*(1/4))*theta(t)-1000*Am*g*sin(omega*t-k*x(t))*((z(t)-(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)+1000*Am*g*sin(omega*t-k*x(t))*((z(t)+(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)-(1000*g*z(t)*(1/2)+1000*g*b*(1/4))*(2*a*x(t)+a*b*theta(t))+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)^2*z(t)+(1000*g*a^3*(1/12))*theta(t)+(1000*g*a*b^2*(1/4))*theta(t)^3+(k*theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))))-k*theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))-cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))+cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t)))))/k^2 = 0;

1.2*(diff(diff(x(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(z(t), t), t))+.9062916667*(diff(diff(theta(t), t), t))+(0.9962500000e-1+.16*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-2*alpha(t)*(0.8e-1*(diff(theta(t), t))^2-0.8e-1*(diff(theta(t), t)+diff(alpha(t), t))^2)+3.924*alpha(t)+1340.209500*theta(t)+9810.000*theta(t)*z(t)^2+4905.000*theta(t)*z(t)+1.596679687-11772.000*sin(.43*t-x(t))*(-(z(t)-.2500000000*theta(t)+1/2)*sinh(-11/2-z(t)+.2500000000*theta(t))-cosh(-11/2-z(t)+.2500000000*theta(t)))/cosh(5)+11772.000*sin(.43*t-x(t))*((z(t)+.2500000000*theta(t)+1/2)*sinh(11/2+z(t)+.2500000000*theta(t))-cosh(11/2+z(t)+.2500000000*theta(t)))/cosh(5)-(4905.00*z(t)+2452.50)*(1.0*x(t)+.5*theta(t))+4905.000*theta(t)^2*z(t)+1226.250*theta(t)^3-theta(t)*(x(t)-.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t)))+theta(t)*(x(t)+.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))-cosh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))+cosh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t))) = 0

(4.1)

NULL

``

Equation suivant y

 

``

eq4 := mp*l*(diff(x(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(z(t), `$`(t, 2)))+(d*l*mp+l^2*mp+Ip)*(diff(theta(t), `$`(t, 2)))+(l^2*mp+Ip)*(diff(alpha(t), `$`(t, 2)))-9.81*mp*l*(alpha(t)+theta(t))-l*d*mp*(diff(theta(t), `$`(t, 1)))^2*alpha(t) = 0;

.4*(diff(diff(x(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+.2596250000*(diff(diff(theta(t), t), t))+0.9962500000e-1*(diff(diff(alpha(t), t), t))-3.924*alpha(t)-3.924*theta(t)-.16*(diff(theta(t), t))^2*alpha(t) = 0

(5.1)

``

Résolution :

 

NULL

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(6.1)

if theta(t) <> 0 then
 solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0):
 odeplot(solution, [[t, x(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, z(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, theta(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, alpha(t)]], t = 0 .. 100, thickness = 2);
 #odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..100, thickness=2);
 end ;

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.14822202628077855e-4, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = 17.65307013401197, (3) = .0, (4) = -7.093237546136753, (5) = .0, (6) = .20723671453704962, (7) = .0, (8) = -340.5471428571427}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

Warning, cannot evaluate the solution further right of .33009777, probably a singularity

 

 

 

``

``


thank you !

Download DL.mw

Hello,

This is probably a silly question, but I am trying to compare the difference between two variables in the numerical solution of a system of ODEs. Ideally, I would like a method to find the maximal difference that occurs between two variables.

The following is a highly simplified example of what I'm talking about. In this case I'd like some means to find the timepoint and magnitude of the maximal difference between y2(t) and y3(t) for t>0, which from the plot can be seen to occur at about 1.75 seconds. Note: I realise this particular case admits an analytic solution of y3(t) which could be exploited, but in the general case I'm interested in that won't be true.

Thanks in advance for any help you can provide.

 

with(plots):

Sys := {diff(y1(t), t) = y1(t)^2-4*y1(t)+y2(t)*y1(t)-y2(t)+1, diff(y2(t), t) = y1(t), diff(y3(t), t) = -y3(t)+1, y1(0) = 0, y2(0) = 0, y3(0) = 0}

{diff(y1(t), t) = y1(t)^2-4*y1(t)+y2(t)*y1(t)-y2(t)+1, diff(y2(t), t) = y1(t), diff(y3(t), t) = -y3(t)+1, y1(0) = 0, y2(0) = 0, y3(0) = 0}

(1)

Sol := dsolve(Sys, numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 19, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..49, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..25, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5047658755841546e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .5, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 1.0, (2) = .0, (3) = 1.0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8]), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = y1(t), Y[2] = y2(t), Y[3] = y3(t)]`; YP[1] := Y[1]^2-4*Y[1]+Y[2]*Y[1]-Y[2]+1; YP[3] := -Y[3]+1; YP[2] := Y[1]; 0 end proc, -1, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 12 ) = (), ( 13 ) = (), ( 14 ) = ([0, 0]), ( 15 ) = ("rkf45"), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = y1(t), Y[2] = y2(t), Y[3] = y3(t)]`; YP[1] := Y[1]^2-4*Y[1]+Y[2]*Y[1]-Y[2]+1; YP[3] := -Y[3]+1; YP[2] := Y[1]; 0 end proc, -1, 0, 0, 0, 0]), ( 16 ) = ([0, 0, 0, []]), ( 19 ) = (0), ( 18 ) = ([])  ] ))  ] ); _y0 := Array(0..3, {(1) = 0., (2) = 0., (3) = 0.}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, y1(t), y2(t), y3(t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(2)

odeplot(Sol, [t, abs(y2(t)-y3(t))], t = 0 .. 10)

 

``

 

Download DsolveSolCompare.mw

 

******************************************where d1 to d45 -kappa and chi are constant**********

dsys4 := {d1*h1(theta)+d2*(diff(h1(theta), theta, theta))+d3*(diff(h2(theta), theta))+d4*(diff(h2(theta), theta, theta, theta))+d5*h3(theta)+d6*(diff(h3(theta), theta, theta))+d7*(diff(h1(theta), theta, theta, theta, theta)) = 0, d8*h2(theta)+d9*(diff(h2(theta), theta, theta, theta, theta))+d10*(diff(h2(theta), theta, theta))+d11*(diff(h1(theta), theta))+d12*(diff(h1(theta), theta, theta, theta))+d13*(diff(h3(theta), theta))+d14*(diff(h3(theta), theta, theta, theta)) = 0, h3(theta)^5*(d16+ln(h3(theta))^2*d15+2*ln(h3(theta))*d17)+(diff(h3(theta), theta, theta))*h3(theta)^4*(d19+ln(h3(theta))^2*d18+2*ln(h3(theta))*d20)+(diff(h3(theta), theta, theta, theta, theta))*h3(theta)^4*(d22+ln(h3(theta))^2*d21+2*ln(h3(theta))*d23)+h1(theta)*h3(theta)^4*(d25+ln(h3(theta))^2*d24+2*ln(h3(theta))*d26)+(diff(h1(theta), theta, theta))*h3(theta)^4*(d28+ln(h3(theta))^2*d27+2*ln(h3(theta))*d29)+(diff(h2(theta), theta))*h3(theta)^4*(d31+ln(h3(theta))^2*d30+2*ln(h3(theta))*d32)+(diff(h2(theta), theta, theta, theta))*h3(theta)^4*(d34+ln(h3(theta))^2*d33+2*ln(h3(theta))*d35)+h3(theta)^4*(d37+ln(h3(theta))^2*d36+2*ln(h3(theta))*d38)+h3(theta)^4*(diff(h2(theta), theta, theta, theta, theta, theta, theta))*(d40+ln(h3(theta))^2*d39+2*ln(h3(theta))*d41)-beta*h3(theta)^3*d42-chi*ln(h3(theta))^2*d43/kappa-chi*d45/kappa-2*chi*ln(h3(theta))*d44/kappa = 0, h1(0) = 0, h1(1) = 0, h2(0) = 0, h2(1) = 0, h3(0) = 1, h3(1) = 1, ((D@@1)(h1))(0) = 0, ((D@@1)(h1))(1) = 0, ((D@@1)(h2))(0) = 0, ((D@@1)(h2))(1) = 0, ((D@@1)(h3))(0) = 0, ((D@@1)(h3))(1) = 0, ((D@@2)(h3))(0) = 0, ((D@@2)(h3))(1) = 0}; dsol6 := dsolve(dsys4, 'maxmesh' = 600, numeric, output = listprocedure)

Hi,

I would like a plot of the solution of this differential equation : diff(phi(x),x,x)=phi(x)*(Ep(x)-E) with for example Ep(x)=(1-exp-(x-2))^2 and E=0.5

 

So :

>restart;with(plots); xith(DEtools);

>Ep:=x->(1-exp-(x-2))^2;E:=0.5;

>sol:=dsolve({eq,phi(o)=0,D(phi)(0)=0},type=numeric,range=0..10);

>odeplot(sol);

but nothing appear in the plot except axes

Thanks for answer

 

hi.i encountered this erroe  [Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system] with solving set of differential equation.please help me.thanks a lot  

dsys3 := {`1`*h1(theta)+`1`*(diff(h1(theta), theta, theta))+`1`*(diff(h2(theta), theta))+`1`*(diff(h2(theta), theta, theta, theta))+`1`*h3(theta)+`1`*(diff(h3(theta), theta, theta))+`1`*(diff(h1(theta), theta, theta, theta, theta)) = 0, `1`*h2(theta)+`1`*(diff(h2(theta), theta, theta, theta, theta))+`1`*(diff(h2(theta), theta, theta))+`1`*(diff(h1(theta), theta))+`1`*(diff(h1(theta), theta, theta, theta))+`1`*(diff(h3(theta), theta))+`1`*(diff(h3(theta), theta, theta, theta)) = 0, h3(theta)^5*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h3(theta), theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h3(theta), theta, theta, theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h1(theta)*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h1(theta), theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h2(theta), theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+(diff(h2(theta), theta, theta, theta))*h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h3(theta)^4*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)+h3(theta)^4*(diff(h2(theta), theta, theta, theta, theta, theta, theta))*(`1`+ln(h3(theta))^2*`1`+2*ln(h3(theta))*`1`)-beta*h3(theta)^3*`1`-chi*ln(h3(theta))^2*`1`/kappa-chi*`1`/kappa-2*chi*ln(h3(theta))*`1`/kappa = 0, h1(0) = 0, h1(1) = 0, h2(0) = 0, h2(1) = 0, h3(0) = 1, h3(1) = 1, ((D@@1)(h1))(0) = 0, ((D@@1)(h1))(1) = 0, ((D@@1)(h2))(0) = 0, ((D@@1)(h2))(1) = 0, ((D@@1)(h3))(0) = 0, ((D@@1)(h3))(1) = 0, ((D@@2)(h3))(0) = 0, ((D@@2)(h3))(1) = 0}; dsol5 := dsolve(dsys3, 'maxmesh' = 600, numeric, output = listprocedure);
%;
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

 Hi all,

i want to solve a system of differential equations in maple with "dsolve, numeric",

i got th error message: "Error, (in f) unable to store in Matrix ..."

what is the problem?

thanks a lot

Hello guys ...

I used a numerically method to solve couple differential equation that it has some boundary conditions. My problem is that some range of answers has 50% error . Do you know things for improving our answers in maple ?

my problem is :

a*Φ''''(x)+b*Φ''(x)+c*Φ(x)+d*Ψ''(x)+e*Ψ(x):=0

d*Φ''(x)+e*Φ(x)+j*Ψ''(x)+h*Ψ(x):=0

suggestion method by preben Alsholm:

a,b,c,d,e,j,h are constants.suppose some numbers for these constants . I used this code:


VR22:=0.1178*diff(phi(x),x,x,x,x)-0.2167*diff(phi(x),x,x)+0.0156*diff(psi(x),x,x)+0.2852*phi(x)+0.0804*psi(x);
VS22:=0.3668*diff(psi(x),x,x)-0.0156*diff(phi(x),x,x)-0.8043*psi(x)-0.80400*phi(x);
bok:=evalf(dsolve({VR22=0,VS22=0}));

PHI,PSI:=op(subs(bok,[phi(x),psi(x)]));
Eqs:={eval(PHI,x=1.366)=1,eval(diff(PHI,x),x=1.366)=0,eval(PHI,x=-1.366)=1,eval(diff(PHI,x),x=-1.366)=0,
eval(PSI,x=1.366)=1,eval(PSI,x=1.366)=1};
C:=fsolve(Eqs,indets(%,name));
eval(bok,C);
SOL:=fnormal(evalc(%));


I used digits for my code at the first of writting.

please help me ... what should i do?

hello evreybody i have these Error :

 

restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;h:=3;a:=30;b:=15;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

 

3

 

30

 

15

(1)

A:=(1000*g)/2;

4905.00

(2)

v:=1/tan(theta(t));

1/tan(theta(t))

(3)

s:=(1000*F*g*sin(omega*t-k*x(t)))/k*sinh(k*h);

35337.21492*sin(.43*t-0.2001014429e-1*x(t))

(4)

n:=49.97465213;

49.97465213

(5)

Z:=z(t)-a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)-15*sin(theta(t))+(15/2)*cos(theta(t))

(6)

Za:=z(t)+a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)+15*sin(theta(t))+(15/2)*cos(theta(t))

(7)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*(Z)^2+s*(sinh(k*(h+Z))-sinh(k*h))-A*(Za)^2-s*(sinh(k*(h+Za))-sinh(k*h))+A*(Za^2-Z^2)-s*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))) = 0

(8)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))-A*tan(theta(t))*(Z)^2-s*tan(theta(t))*(sinh(k*(h+Z))-sin(k*h))+A*tan(theta(t))*(Za)^2+s*tan(theta(t))*(sinh(k*(h+Za))-sin(k*h))+A*v*(Za^2-Z^2)+s*v*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))-4905.00*tan(theta(t))*(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*tan(theta(t))*(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*(-(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2+(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2)/tan(theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t))))/tan(theta(t)) = 0

(9)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(10)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(11)

CI:= x(0)=0,z(0)=3,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 3, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(12)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = undefined, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 1, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = undefined, (3) = .0, (4) = undefined, (5) = .0, (6) = undefined, (7) = .0, (8) = undefined}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 3.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(13)

``

#odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

odeplot(solution,[[t,x(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,z(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

Download fffffffff_INFINI.mw

please help 
thank you !

 Hello everybody, I need help please   

 


restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=-1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

-1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

(1)

A:=168913.8672;

168913.8672

(2)

s:=0.0666666666667;

0.666666666667e-1

(3)

n:=49.97465213;

49.97465213

(4)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*2*(s*sinh(k*ly+k*ly)*sin(omega*t-k*x(t)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+2710.493534*sin(.43*t-0.2001014429e-1*x(t)) = 0

(5)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))+9.81*(mp+mb)+1000*g*z(t)*15.3*30+A*cosh(k*ly+k*z(t))*n*(cos(omega*t-k*15)-cos(omega*t+k*15))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))+13263.12+4502790.000*z(t)+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*z(t))*(cos(.43*t-.3001521644)-cos(.43*t+.3001521644)) = 0

(6)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(7)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(8)

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(9)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=100000);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5145421769461311e-3, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 100000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = -.0, (5) = .0, (6) = .0, (7) = .0, (8) = -9.809999999999999}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(10)

``

odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,x(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,z(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

thank you 

1 2 3 4 5 6 7 Last Page 1 of 17