Items tagged with dsolve dsolve Tagged Items Feed

Hi, i am trying to solve my PDEs with HPM method ,but i get strange errors.

first one is :Error, (in trig/reduce/reduce) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc,

but when i run my last function again,the error chages,let me show you.


restart;
lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;
                              0.5
                              0.5
                              0.5
                              0.1
                              0.1
                               10
> EQUATIONS;


equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;
/  d   /  d   /  d   /  d         \\\\     //  d         \ /  d  
|----- |----- |----- |----- f(eta)|||| - R ||----- f(eta)| |-----
\ deta \ deta \ deta \ deta       ////     \\ deta       / \ deta

   /  d         \\          /  d   /  d         \\\
   |----- f(eta)|| - f(eta) |----- |----- f(eta)|||
   \ deta       //          \ deta \ deta       ///

         /  d         \    
   - 1.0 |----- g(eta)| = 0
         \ deta       /    
     /  d   /  d         \\
     |----- |----- g(eta)||
     \ deta \ deta       //

            //  d         \                 /  d         \\
        - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
            \\ deta       /                 \ deta       //

              /  d         \    
        + 1.0 |----- f(eta)| = 0
              \ deta       /    
  /  d   /  d             \\               /  d             \
  |----- |----- theta(eta)|| + 10 R f(eta) |----- theta(eta)|
  \ deta \ deta           //               \ deta           /

           /  d           \ /  d             \
     + 0.1 |----- phi(eta)| |----- theta(eta)|
           \ deta         / \ deta           /

                             2    
           /  d             \     
     + 0.1 |----- theta(eta)|  = 0
           \ deta           /     
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
> BOUNDARY*CONDITIONS;


ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;
   f(0) = 0, D(f)(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1
  f(1) = 0.5, D(f)(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0
> HPMs;


hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

        //  d   /  d   /  d   /  d         \\\\
(1 - p) ||----- |----- |----- |----- f(eta)||||
        \\ deta \ deta \ deta \ deta       ////

         /  d         \\     //  d   /  d   /  d   /  d         \
   - 1.0 |----- g(eta)|| + p ||----- |----- |----- |----- f(eta)|
         \ deta       //     \\ deta \ deta \ deta \ deta       /

  \\\     //  d         \ /  d   /  d         \\
  ||| - R ||----- f(eta)| |----- |----- f(eta)||
  ///     \\ deta       / \ deta \ deta       //

            /  d   /  d         \\\       /  d         \\    
   - f(eta) |----- |----- f(eta)||| - 1.0 |----- g(eta)|| = 0
            \ deta \ deta       ///       \ deta       //    
        //  d   /  d         \\       /  d         \\     //  d  
(1 - p) ||----- |----- g(eta)|| + 1.0 |----- f(eta)|| + p ||-----
        \\ deta \ deta       //       \ deta       //     \\ deta

   /  d         \\
   |----- g(eta)||
   \ deta       //

       //  d         \                 /  d         \\
   - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
       \\ deta       /                 \ deta       //

         /  d         \\    
   + 1.0 |----- f(eta)|| = 0
         \ deta       //    
                                       /                         
        /  d   /  d             \\     |/  d   /  d             \
(1 - p) |----- |----- theta(eta)|| + p ||----- |----- theta(eta)|
        \ deta \ deta           //     \\ deta \ deta           /

  \               /  d             \
  | + 10 R f(eta) |----- theta(eta)|
  /               \ deta           /

         /  d           \ /  d             \
   + 0.1 |----- phi(eta)| |----- theta(eta)|
         \ deta         / \ deta           /

                           2\    
         /  d             \ |    
   + 0.1 |----- theta(eta)| | = 0
         \ deta           / /    
        //  d   /  d           \\
(1 - p) ||----- |----- phi(eta)||
        \\ deta \ deta         //

                 /  d   /  d             \\\     //  d   /  d   
   + 1.000000000 |----- |----- theta(eta)||| + p ||----- |-----
                 \ deta \ deta           ///     \\ deta \ deta

          \\                /  d           \
  phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
          //                \ deta         /

                 /  d   /  d             \\\    
   + 1.000000000 |----- |----- theta(eta)||| = 0
                 \ deta \ deta           ///    
f(eta)=sum(f[i](eta)*p^i,i=0..1);
                f(eta) = f[0](eta) + f[1](eta) p
g(eta)=sum(g[i](eta)*p^i,i=0..1);
                g(eta) = g[0](eta) + g[1](eta) p
theta(eta)=sum(theta[i](eta)*p^i,i=0..1);
          theta(eta) = theta[0](eta) + theta[1](eta) p
phi(eta)=sum(phi[i](eta)*p^i,i=0..1);
             phi(eta) = phi[0](eta) + phi[1](eta) p
> FORequ1;


A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);
/      /  d            \ /  d   /  d            \\
|-1. R |----- f[1](eta)| |----- |----- f[1](eta)||
\      \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  3   /
   + R f[1](eta) |----- |----- f[1](eta)||| p  + |
                 \ deta \ deta          ///      \
      /  d            \ /  d   /  d            \\
-1. R |----- f[0](eta)| |----- |----- f[1](eta)||
      \ deta          / \ deta \ deta          //

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[1](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\
   + R f[0](eta) |----- |----- f[1](eta)||
                 \ deta \ deta          //

                 /  d   /  d            \\\  2   //  d   /  d   /
   + R f[1](eta) |----- |----- f[0](eta)||| p  + ||----- |----- |
                 \ deta \ deta          ///      \\ deta \ deta \

    d   /  d            \\\\       /  d            \
  ----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
   deta \ deta          ////       \ deta          /

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[0](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  
   + R f[0](eta) |----- |----- f[0](eta)||| p
                 \ deta \ deta          ///  

     /  d   /  d   /  d   /  d            \\\\
   + |----- |----- |----- |----- f[0](eta)||||
     \ deta \ deta \ deta \ deta          ////

         /  d            \    
   - 1.0 |----- g[0](eta)| = 0
         \ deta          /    
A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;
/  d   /  d   /  d   /  d            \\\\       /  d            \   
|----- |----- |----- |----- f[0](eta)|||| - 1.0 |----- g[0](eta)| =
\ deta \ deta \ deta \ deta          ////       \ deta          /   

  0
/  d   /  d   /  d   /  d            \\\\       /  d            \
|----- |----- |----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
\ deta \ deta \ deta \ deta          ////       \ deta          /

       /  d            \ /  d   /  d            \\
   - R |----- f[0](eta)| |----- |----- f[0](eta)||
       \ deta          / \ deta \ deta          //

                 /  d   /  d            \\    
   + R f[0](eta) |----- |----- f[0](eta)|| = 0
                 \ deta \ deta          //    
icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
>
FORequ2;


B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);
/      /  d            \          
|-1. R |----- f[1](eta)| g[1](eta)
\      \ deta          /          

                 /  d            \\  3   /
   + R f[1](eta) |----- g[1](eta)|| p  + |
                 \ deta          //      \
      /  d            \          
-1. R |----- f[0](eta)| g[1](eta)
      \ deta          /          

          /  d            \          
   - 1. R |----- f[1](eta)| g[0](eta)
          \ deta          /          

                 /  d            \
   + R f[0](eta) |----- g[1](eta)|
                 \ deta          /

                 /  d            \\  2   //  d   /  d            
   + R f[1](eta) |----- g[0](eta)|| p  + ||----- |----- g[1](eta)
                 \ deta          //      \\ deta \ deta          

  \\       /  d            \        /  d            \          
  || + 1.0 |----- f[1](eta)| - 1. R |----- f[0](eta)| g[0](eta)
  //       \ deta          /        \ deta          /          

                 /  d            \\     /  d   /  d            \\
   + R f[0](eta) |----- g[0](eta)|| p + |----- |----- g[0](eta)||
                 \ deta          //     \ deta \ deta          //

         /  d            \    
   + 1.0 |----- f[0](eta)| = 0
         \ deta          /    
B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;
     /  d   /  d            \\       /  d            \    
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0
     \ deta \ deta          //       \ deta          /    
       /  d   /  d            \\       /  d            \
       |----- |----- g[1](eta)|| + 1.0 |----- f[1](eta)|
       \ deta \ deta          //       \ deta          /

              /  d            \          
          - R |----- f[0](eta)| g[0](eta)
              \ deta          /          

                        /  d            \    
          + R f[0](eta) |----- g[0](eta)| = 0
                        \ deta          /    
icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
> FORequ3;


C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);
 /                                     
 |                /  d                \
 |10. R f[1](eta) |----- theta[1](eta)|
 \                \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

                               2\                              
          /  d                \ |  3   /                /  d   
    + 0.1 |----- theta[1](eta)| | p  + |10. R f[0](eta) |-----
          \ deta              / /      \                \ deta

                \                   /  d                \
   theta[1](eta)| + 10. R f[1](eta) |----- theta[0](eta)|
                /                   \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                                                            /
          /  d                \ /  d                \\  2   |/
    + 0.2 |----- theta[0](eta)| |----- theta[1](eta)|| p  + ||
          \ deta              / \ deta              //      \\

     d   /  d                \\
   ----- |----- theta[1](eta)||
    deta \ deta              //

                      /  d                \
    + 10. R f[0](eta) |----- theta[0](eta)|
                      \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                               2\  
          /  d                \ |  
    + 0.1 |----- theta[0](eta)| | p
          \ deta              / /  

      /  d   /  d                \\    
    + |----- |----- theta[0](eta)|| = 0
      \ deta \ deta              //    
C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;
                  d   /  d                \    
                ----- |----- theta[0](eta)| = 0
                 deta \ deta              /    
       /  d   /  d                \\
       |----- |----- theta[1](eta)||
       \ deta \ deta              //

                           /  d                \
          + 10 R f[0](eta) |----- theta[0](eta)|
                           \ deta              /

                /  d              \ /  d                \
          + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
                \ deta            / \ deta              /

                                     2    
                /  d                \     
          + 0.1 |----- theta[0](eta)|  = 0
                \ deta              /     
icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;
                theta[0](0) = 1, theta[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0
> FORequ4;


E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);
                 3 /  d              \   /                /  d   
0.5 R f[1](eta) p  |----- phi[1](eta)| + |0.5 R f[0](eta) |-----
                   \ deta            /   \                \ deta

             \                   /  d              \\  2   //
  phi[1](eta)| + 0.5 R f[1](eta) |----- phi[0](eta)|| p  + ||
             /                   \ deta            //      \\

    d   /  d              \\
  ----- |----- phi[1](eta)||
   deta \ deta            //

                 /  d   /  d                \\
   + 1.000000000 |----- |----- theta[1](eta)||
                 \ deta \ deta              //

                     /  d              \\  
   + 0.5 R f[0](eta) |----- phi[0](eta)|| p
                     \ deta            //  

     /  d   /  d              \\
   + |----- |----- phi[0](eta)||
     \ deta \ deta            //

                 /  d   /  d                \\    
   + 1.000000000 |----- |----- theta[0](eta)|| = 0
                 \ deta \ deta              //    
E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;
       /  d   /  d              \\
       |----- |----- phi[0](eta)||
       \ deta \ deta            //

                        /  d   /  d                \\    
          + 1.000000000 |----- |----- theta[0](eta)|| = 0
                        \ deta \ deta              //    
         /  d   /  d              \\
         |----- |----- phi[1](eta)||
         \ deta \ deta            //

                          /  d   /  d                \\
            + 1.000000000 |----- |----- theta[1](eta)||
                          \ deta \ deta              //

                              /  d              \    
            + 0.5 R f[0](eta) |----- phi[0](eta)| = 0
                              \ deta            /    
icsE1:=theta[0](0)=1,theta[0](1)=0,phi[0](0)=1,phi[0](1)=0;
icsE2:=theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;
 theta[0](0) = 1, theta[0](1) = 0, phi[0](0) = 1, phi[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0
       
theta[0](eta) = -(152675527/100000000)*eta+1;
                                152675527        
              theta[0](eta) = - --------- eta + 1
                                100000000        
U:=f[1](eta)=0;
                         f[1](eta) = 0
Dsolve(A1,B1,icsA1,icsB1);
                  Dsolve(A1, B1, icsA1, icsB1)


sys:={ diff(g[0](eta), eta, eta)+1.0*(diff(f[0](eta), eta)) = 0, diff(f[0](eta), eta, eta, eta, eta)-1.0*(diff(g[0](eta), eta)) = 0};
    //  d   /  d   /  d   /  d            \\\\
   { |----- |----- |----- |----- f[0](eta)||||
    \\ deta \ deta \ deta \ deta          ////

            /  d            \      
      - 1.0 |----- g[0](eta)| = 0,
            \ deta          /      

     /  d   /  d            \\       /  d            \    \
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0 }
     \ deta \ deta          //       \ deta          /    /
IC_1:={ f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0,f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0};
    {f[0](0) = 0, f[0](1) = 0.5, g[0](0) = 0, g[0](1) = 0,

      D(f[0])(0) = 1, D(f[0])(1) = 0}
ans1 := combine(dsolve(sys union IC_1,{f[0](eta),g[0](eta)}),trig);
Error, (in dsolve) expecting an ODE or a set or list of ODEs. Received `union`(IC_1, sys)
>

Hello everybody.

I'm trying to obtain the numerical solution of a differential equation. Unfortunately, this prove to be quite challenging. I was able to obtain a rough solution using mathematica, but nothing more. The function is strictly increasing (for sure).

Any help is really REALLY appreciated, thanks!

 

``

deq1 := 1/(b-f(b)) = (2*(3-(1-f(b)*(diff(f(b), b, b)))/((diff(f(b), b))*(diff(f(b), b)))))/(1-2*(b-(1-f(b))/(diff(f(b), b))))

1/(b-f(b)) = 2*(3-(1-f(b)*(diff(diff(f(b), b), b)))/(diff(f(b), b))^2)/(1-2*b+2*(1-f(b))/(diff(f(b), b)))

(1)

ic1 := eval(f(b), b = 3/8) = 0, eval(f(b), b = 1/2) = 1/2

f(3/8) = 0, f(1/2) = 1/2

(2)

digits := 3

3

(3)

dsol1 := dsolve({deq1, ic1}, method = bvp[middefer], numeric, range = 3/8 .. 1/2)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

``

 

Download diffeqn.mw

How can i over come convergence error, i am unable to apply approxsoln appropriately and continouation as well. regards

N := 5;

-(1/2)*Pr*n*x*(diff(f(x), x))*(diff(theta(x), x))-(1/2)*Pr*(n+1)*f(x)*(diff(theta(x), x))-(1/2)*(n+1)*(diff(diff(theta(x), x), x))+Pr*gamma*((1/4)*(n^2-3*n+3)*x^2*(diff(f(x), x))*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+5*n+3)*f(x)*(diff(f(x), x))*(diff(theta(x), x))+(1/4)*n(n+1)*x*f(x)*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+3*n-3)*x*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n-1)*x^2*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/2)*n*(n+1)*x*f(x)*(diff(f(x), x))*(diff(diff(theta(x), x), x))+(1/4)*(n^2-1)*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n+1)^2*f(x)^2*(diff(diff(theta(x), x), x))+(1/4)*(n-1)^2*x^2*(diff(f(x), x))^2*(diff(diff(theta(x), x), x))) = 0

(1)

bc := (D(theta))(0) = -Bi*(1-theta(0)), theta(N) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(N) = 1;

(D(theta))(0) = -Bi*(1-theta(0)), theta(5) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(5) = 1

(2)

a1 := dsolve(subs(beta = .1, n = .5, Pr = 10, gamma = .1, Bi = 50, {bc, eq1, eq2}), numeric, method = bvp[midrich], abserr = 10^(-8), output = array([seq(.1*i, i = 0 .. 10*N)]))

Error, (in dsolve/numeric/BVPSolve) initial Newton iteration is not converging

 

``

 

Download ehtasham.mwehtasham.mw

Dear all,

I am trying to solve the following system of equations by using dsolve, but I get the error:  error, (in RootOf) expression independent of, _Z, could you please help me to solve it. Thank you.

restart;
Digits := 20;
with(plots);
Nr := .1; Nb := .3; Nt := .1; Rb := 0; Lb := 1; Le := 10; Pe := 1; ss := .2; aa := .1; bb := .2; cc := .3; nn := 1.5;
Eq1 := nn.(diff(f(eta), eta))^(nn-1).(diff(f(eta), `$`(eta, 2)))-(nn+1)/(2.*nn+1).eta.(diff(theta(eta), eta)-Nr.(diff(h(eta), eta))-Rb.(diff(g(eta), eta))) = 0;
Eq2 := diff(theta(eta), `$`(eta, 2))+nn/(2.*nn+1).f(eta).(diff(theta(eta), eta))+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+nn/(2.*nn+1).Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;
Eq4 := diff(g(eta), `$`(eta, 2))+nn/(2.*nn+1).Lb.f(eta).(diff(g(eta), eta))-Pe.((diff(g(eta), eta)).(diff(h(eta), eta))+(diff(h(eta), `$`(eta, 2))).g(eta)) = 0;
etainf := 10;
bcs := f(0) = ss/Le.(D(h))(0), theta(0) = lambda+aa.(D(theta))(0), h(0) = lambda+bb.(D(h))(0), g(0) = lambda+cc.(D(g))(0), (D(f))(etainf) = 0, theta(etainf) = 0, h(etainf) = 0, g(etainf) = 0;
dsys := {Eq1, Eq2, Eq3, Eq4, bcs};
dsol := dsolve(dsys, numeric, continuation = lambda, output = procedurelist);
Error, (in RootOf) expression independent of, _Z

hi

how i can solve nonlinear differential equations with shooting method in maple?ω in equation is unknown...

thanks

eq.mw

dsys3 := {-0.326905829596411e-2*g(x)-(diff(g(x), x, x))-(diff(s(x), x))*(diff(s(x), x, x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(s(x), x, x))+0.220893539279189e-4*(diff(s(x), x, x, x, x))-(9/8)*(diff(s(x), x, x))*(diff(s(x), x))^2-(3/4)*(diff(s(x), x, x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(g(x), x, x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

{-0.326905829596411e-2*g(x)-(diff(diff(g(x), x), x))-(diff(s(x), x))*(diff(diff(s(x), x), x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(diff(s(x), x), x))+0.220893539279189e-4*(diff(diff(diff(diff(s(x), x), x), x), x))-(9/8)*(diff(diff(s(x), x), x))*(diff(s(x), x))^2-(3/4)*(diff(diff(s(x), x), x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(diff(g(x), x), x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

(1)

``

 

Download eq.mw

restart:with(plots):
eq:=(diff(f(eta),eta$2))-a*f(eta)+b*(1+diff(f(eta),eta)^2)^(-1/2)=0;
bc:=f(1)=0,D(f)(0)=0;
ans := dsolve(eq);

I'm trying to plot the varying results to a second degree differential function with different values for one constant in one graph. Here is what I have so far, which is already working.

______________________________________________________________________

> with(plots);
> m := 0.46e-1; d := 0.42e-1; v := 60; alpha0 := convert(12*degrees, radians); g := 9.81; pa := 1.205; cd := .2; n := 4000; omega := 2*Pi*(1/60);
                           
> p := 6*m/(Pi*d^3);
                           
> k1 := (3/4)*cd*pa/(d*p); k2 := (3/8)*omega*n*pa/p;
                  
> gl1 := vx(t) = diff(x(t), t);
                          
> gl2 := vy(t) = diff(y(t), t);
                     
> gl3 := diff(vx(t), t) = -k1*vx(t)*(vx(t)^2+vy(t)^2)^(1/2)-k2*vy(t);
       
> gl4 := diff(vy(t), t) = -g-k1*vy(t)*(vx(t)^2+vy(t)^2)^(1/2)+k2*vx(t);
 
> init1 := x(0) = 0;
> init2 := y(0) = 0;
> init3 := vx(0) = v*cos(alpha0);
> init4 := vy(0) = v*sin(alpha0);
> sol := dsolve({gl1, gl2, gl3, gl4, init1, init2, init3, init4}, {vx(t), vy(t), x(t), y(t)}, type = numeric);

> sol(.5);
> odeplot(sol, [x(t), y(t)], t = 0 .. 6.7);

______________________________________
What I'd like to do now is, for example, plot the solutions in one graph (preferably as a gif) for when n=1500, n=3000, n=4500 etc. Is there a simple way to achieve this? I've tried various methods so far without success.

Hi

Dear friends

I use the command "dsolve(`union`(deq, initial), numeric, method = lsode)" for solving a fourth order ODE.

But for some numerical values of the parameters the bellow error is occurred:

" an excessive amount of work (greater than mxstep) was done ".

I have three questions:

1- how can I increase the mxstep from default amount (i.e. 500) to a greater value?

2- how can I ensure that the absolute error is less than 10E-6?

3- when I use lsode which way of numerical solution is applied (Euler,midpoint, rk3, rk4, rkf, heun, ... )?

 

Thanks a lot for your help

Hello evrey one , I need help for solve these equation with boundary conditions 

 

 Boundary Conditions


My COde + equation 

NULL

restart; with(plots); with(PDEtools)

NULL

NULL

eq := diff(g(Y), `$`(Y, 4))+diff(g(Y), `$`(Y, 2))+g(Y);

diff(diff(diff(diff(g(Y), Y), Y), Y), Y)+diff(diff(g(Y), Y), Y)+g(Y)

(1)

cis := g(1/4) = 0, (D(g))(1/4) = 0, g(0) = 0, (D[2](g))(0) = 0

Error, (in evalapply) too few variables for the derivative with respect to the 2nd variable

 

solut := dsolve([eq, cis], numeric)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``

NULL

NULL

NULL

``

 

Download mp.mw

 

Thank you 

 

solarsysem.mw Sorry for the repost but this is my newest document.

I have to create a solar system model on maple by defining a force equation then using the seq function to create a diffeq and then solving those differential equations using the initial conditions with the sun at (0, 0, 0) in xyz coordinates.

It works until my last "ic1" entry and I get an error in dsolve/numeric/process_input

I'm pretty desperate, I'll appreciate any help I can get

 

 

 

 

Dear all,

 

I am trying to solve a differential equation; 

diff(H(z), z) = 6.534101519*10^17*H(z)^2*(1.+z)^(5/2)+6.250000000*10^(-67)*sqrt(-1.639468135*10^119*H(z)^2*(1.+z)^5+9.161095674*10^82*(1.+z)^8+1.092978756*10^168*H(z)^4*(1.+z)^5)

sol := dsolve({test, H(0) = 2.268308490*10^(-18)}, numeric, range = 0 .. 3)

The problem is that it gives me the eror: 

Warning, cannot evaluate the solution further right of .25430145, probably a singularity

How can I get rid of this?

 

 

Dear all

I have the following equaion

Eq := diff(phi(x, k), x, x)+(k^2+2*sech(x))*phi(x, k) = 0;
          
The solution is given by 

phi := (I*k-tanh(x))*exp(I*k*x)/(I*k-1);

My question : At what value of k is there a bound state and in this case can we give a simple form of the solution phi(x,k)

 

With best regards

 

How do I create a function from dsolve() result?

For example, dsolve() outputs:

u(t) = u0ea t

then I would like to create function:

u := t → u0ea t

but I want to do it using dsolve() output, not typing it manually. Thanks.

Dear Maple researchers

 

I have a problem in solving a system of odes that resulted from discretizing, in space variable, method of lines (MOL).

The basic idea of this code is constructed from the following paper:

http://www.sciencedirect.com/science/article/pii/S0096300313008060

If kindly is possible, please tell me whas the solution of this problem.

With kin dregards,

Emran Tohidi.

My codes is here:

> restart;
> with(orthopoly);
print(`output redirected...`); # input placeholder
> N := 4; Digits := 20;
print(`output redirected...`); # input placeholder

> A := -1; B := 1; rho := 3/4;
> g1 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(A-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc; g2 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(B-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> f := proc (x) options operator, arrow; 1/2+(1/2)*tanh((1/2)*x/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> uexact := proc (x, t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(x-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> basiceq := simplify(diff(uexact(x, t), `$`(t, 1))-(diff(uexact(x, t), `$`(x, 2)))+uexact(x, t)*(1-uexact(x, t))*(rho-uexact(x, t)));
print(`output redirected...`); # input placeholder
                                      0
> alpha := 0; beta := 0; pol := P(N-1, alpha+1, beta+1, x); pol := unapply(pol, x); dpol := simplify(diff(pol(x), x)); dpol := unapply(dpol, x);
print(`output redirected...`); # input placeholder
> nodes := fsolve(P(N-1, alpha+1, beta+1, x));
%;
> xx[0] := -1;
> for i to N-1 do xx[i] := nodes[i] end do;
print(`output redirected...`); # input placeholder
> xx[N] := 1;
> for k from 0 to N do h[k] := 2^(alpha+beta+1)*GAMMA(k+alpha+1)*GAMMA(k+beta+1)/((2*k+alpha+beta+1)*GAMMA(k+1)*GAMMA(k+alpha+beta+1)) end do;
print(`output redirected...`); # input placeholder
> w[0] := 2^(alpha+beta+1)*(beta+1)*GAMMA(beta+1)^2*GAMMA(N)*GAMMA(N+alpha+1)/(GAMMA(N+beta+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for jj to N-1 do w[jj] := 2^(alpha+beta+3)*GAMMA(N+alpha+1)*GAMMA(N+beta+1)/((1-xx[jj]^2)^2*dpol(xx[jj])^2*factorial(N-1)*GAMMA(N+alpha+beta+2)) end do;
print(`output redirected...`); # input placeholder
> w[N] := 2^(alpha+beta+1)*(alpha+1)*GAMMA(alpha+1)^2*GAMMA(N)*GAMMA(N+beta+1)/(GAMMA(N+alpha+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for j from 0 to N do dpoly1[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 1))); dpoly1[j] := unapply(dpoly1[j], x); dpoly2[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 2))); dpoly2[j] := unapply(dpoly2[j], x) end do;
print(`output redirected...`); # input placeholder
print(??); # input placeholder
> for n to N-1 do for i from 0 to N do BB[n, i] := sum(P(jjj, alpha, beta, xx[jjj])*dpoly2[jjj](xx[n])*w[i]/h[jjj], jjj = 0 .. N) end do end do;
> for n to N-1 do d[n] := BB[n, 0]*g1(t)+BB[n, N]*g2(t); d[n] := unapply(d[n], t) end do;
print(`output redirected...`); # input placeholder
> for nn to N-1 do F[nn] := simplify(sum(BB[nn, ii]*u[ii](t), ii = 1 .. N-1)+u[nn](t)*(1-u[nn](t))*(rho-u[nn](t))+d[nn](t)); F[nn] := unapply(F[nn], t) end do;
print(`output redirected...`); # input placeholder
> sys1 := [seq(d*u[q](t)/dt = F[q](t), q = 1 .. N-1)];
print(`output redirected...`); # input placeholder
[d u[1](t)                                                                
[--------- = 40.708333333333333334 u[1](t) + 52.190476190476190476 u[2](t)
[   dt                                                                    

                                                                  2          3
   + 39.958333333333333334 u[3](t) - 1.7500000000000000000 u[1](t)  + u[1](t)

   + 7.3392857142857142858

   - 3.6696428571428571429 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 3.6696428571428571429 tanh(
                                                     d u[2](t)   
-0.35355339059327376220 + 0.12500000000000000000 t), --------- =
                                                        dt       
-20.416666666666666667 u[1](t) - 25.916666666666666667 u[2](t)

                                                                  2          3
   - 20.416666666666666667 u[3](t) - 1.7500000000000000000 u[2](t)  + u[2](t)

   - 3.7500000000000000000

   + 1.8750000000000000000 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) + 1.8750000000000000000 tanh(
                                                     d u[3](t)                
-0.35355339059327376220 + 0.12500000000000000000 t), --------- = 29.458333333\
                                                        dt                    

  333333333 u[1](t) + 38.476190476190476190 u[2](t)

                                                                  2          3
   + 30.208333333333333333 u[3](t) - 1.7500000000000000000 u[3](t)  + u[3](t)

   + 5.4107142857142857144

   - 2.7053571428571428572 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 2.7053571428571428572 tanh(
                                                   ]
-0.35355339059327376220 + 0.12500000000000000000 t)]
                                                   ]
> ics := seq(u[qq](0) = evalf(f(xx[qq])), qq = 1 .. N-1);
print(`output redirected...`); # input placeholder
    u[1](0) = 0.38629570659055483825, u[2](0) = 0.50000000000000000000,

      u[3](0) = 0.61370429340944516175
> dsolve([sys1, ics], numeic);
%;
Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type {set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic})}, but received [[d*u[1](t)/dt = (20354166666666666667/500000000000000000)*u[1](t)+(13047619047619047619/250000000000000000)*u[2](t)+(19979166666666666667/500000000000000000)*u[3](t)-(7/4)*u[1](t)^2+u[1](t)^3+36696428571428571429/5000000000000000000-(36696428571428571429/10000000000000000000)*tanh(1767766952966368811/5000000000000000000+(1/8)*t)-(36696428571428571429/10000000000000000000)*tanh(-1767766952966368811/5000000000000000000+(1/8)*t), d*u[2](t)/dt = -(20416666666666666667/1000000...

1 2 3 4 5 6 7 Last Page 1 of 30