Items tagged with education education Tagged Items Feed

Maplesoft regularly hosts live webinars on a variety of topics. Below you will find details on some upcoming webinars we think may be of interest to the MaplePrimes community.  For the complete list of upcoming webinars, visit our website.


Bring Statistics Education to Life!

This exciting new webinar will demonstrate some of the ways that educators can take advantage of Maple’s symbolic and numeric approach for statistics education. Examples will include basic statistics theory including descriptive statistics such as measures of central tendency and spread, hypothesis testing, as well as discrete and continuous random variables.

Many examples presented in this webinar will be taken from the new Student Statistics package that was introduced in Maple 18. The Student Statistics was designed with classroom use in mind, and features detailed explanations and instructions, interactive demonstrations, and visualizations, all of which are great learning tools for teaching a course involving probability and statistics.

To join us for the live presentation, please click here to register.


Symbolic Computing for Engineering

As engineering applications become more complex, it is becoming increasingly difficult to satisfy the often-conflicting project constraints using traditional tools. As a result, we’ve found there is a growing interest within the engineering community for tools that make engineering calculations transparent and capture not just results but also the knowledge and analysis used throughout the engineering workflow. Engineering organizations are achieving this goal by making symbolic techniques an integral part of their tool set.

In this webinar, Laurent Bernardin will demonstrate how to enhance the early-stage design phase by making mathematical computations explicit and transparent, and then integrating the results into an existing tool chain.

To join us for the live presentation, please click here to register.

I think we all know the routine. We walk to a large classroom, we sit down for a test, we receive a large stack of questions stapled together and then we fill in tiny bubbles on a separate sheet that is automatically graded by a scanning machine. We’ve all been there. I was thinking recently about how far the humble multiple choice question has come over the last few years with the advent of systems like Maple T.A., and so I did a little research.

Multiple choice questions were first widely-distributed during World War I to test the intelligence of recruits in the United States of America. The army desired a more efficient way of testing as using written and oral evaluations was very time consuming. Dr. Robert Yerkes, the psychologist who convinced the army to try a multiple choice test, wanted to convince people that psychiatry could be a scientific study and not just philosophical. A few years later, SATs began including multiple choice questions. Since then, educational institutions have adopted multiple choice questions as a permanent tool for many different types of assessments.

One of the biggest advances in the use of multiple choice questions was the birth of automatic grading through the use of machine-readable papers. These grew in popularity during the mid-70s as teachers and instructors saved time by not having to grade answer sheets manually.

Until recently, there has not been much advancement in this area.  It’s true, Maple T.A. can do so much more than just multiple choice questions, so this style of question is less important in large-scale testing than it used to be. But multiple choice questions still have their place in an automated testing system, where uses include leveraging older content, easily detecting patterns of misunderstanding, requiring students to choose from different images, and minimizing student interaction with the system. Luckily, Maple T.A. takes even the humble multiple choice questions to the next level. Now you might be thinking, how is that even possible given the basic structure of multiple choice questions? What could possibly be done to enhance them?

Well, for starters, in Maple T.A., you can permute the answers. This means you have the option to change the order of the choices for each student. This is also possible with machine-readable papers, but this does require multiple solution sets for a teacher or instructor to keep track of. With Maple T.A., everything is done for you. For example, if you have a multiple choice question in Maple T.A. with 5 answer choices, there are 120 different possible answer orders that students can be presented with. You don’t have to keep track of extra solution sets or note which test version each student is receiving. Maple T.A. takes care of it all.

Maple T.A. allows you to create Algorithmic questions - multiple choice questions in which you can vary different values in your question. And you aren’t limited to selecting values from a specific range, either. For example, you can select a random integer from a pre-defined list, a random number that satisfies a mathematical condition, such as ‘divisible by 3’ or ‘prime’, or even a random polynomial or matrix with specific characteristics. It allows an instructor to create a single question template, but have tens, hundreds, or even thousands of possible question outcomes based on the randomly selected values for the algorithmic variables. The algorithmic variables not only apply to the question being asked by a student, but also the choices they see in a multiple choice question.

You can even create a question where every student gets the same fixed list of choices, but the question varies to ensure that the correct response changes.  That’s going to confuse some students who are doing a little more “collaboration” than is appropriate!

Some of the other advantages of using Maple T.A. for multiple choice are also common to all Maple T.A. question types. For example, you can provide instant, customized feedback to your students. If a student gets a multiple choice question correct, you can provide feedback showing the solution (who is to say the student didn’t guess and get this question correct?) If a student gets a multiple choice question incorrect, you can provide targeted feedback that depends on which response they chose. This allows you to customize exactly what a student sees in regards to feedback without having to write it out by hand each time.

And of course, like in other Maple T.A. questions, multiple choice questions can include mathematical expressions, plots, images, audio clips, videos, and more – in the questions and in the responses.      

Finally, let’s not forget, in an online testing environment, there is no panic when you realized you accidently skipped line 2 while filling out your card, no risk of paper cuts, and no worrying about what kind of pencil to use!


On Thursday, Feb. 27, we are hosting our first-ever Virtual User Summit.   This day provides Maplesoft’s academic community a chance to learn more about the different ways Maplesoft technology is being used in education and research, a chance to interact with Maplesoft employees as well as each other, and a chance to get a glimpse into the future of education.

The virtual nature of this conference is a very tangible example of how much technology has changed our lives.  No less dramatic is the effect of technology on education.  In the keynote presentations at this conference, you will learn about Maplesoft’s vision for the future of education. You’ll also get to see tangible examples of technology that is building towards that vision, including sneak peeks of some things we are working on.

Visit Maplesoft Virtual User Summit for the full agenda and to register.  “Doors open” at 8:30 Eastern Time and the keynote presentations start at 9:00.

We are looking forward to this chance to come together and share our passion for technology and technical education.  Hope to see you there!


It's been 3+ months since we launched this new, experimental, Maple Physics: Research & Development webpage, containing fixes and new developments around the clock made available to everybody. Today we are extending this experience to Differential Equations and Mathematical functions, launching the Maple Differential Equations and Mathematical Functions: Research & Development Maplesoft webpage. Hey!

With these pages we intend to move the focus of developments directly into the topics people are actually working on. The experience so far has been really good, putting our development at high RPM, an exciting roller-coast of exchange and activity.

As with the Research version of Physics, when suggestions about DEs or Mathematical Functions are implemented or issues are fixed, typically within a couple of days when that is possible, the changes will be made available to everybody directly in this new Maplesoft webpage. One word of clarification: for now, these updates will not include numerical ODE or numerical PDE solutions nor their numerical plotting. Sorry guys. One step at a time :)

This first update today concerns Differential Equations: dsolve and pdsolve can now handle linear systems of equations also when entered in Vector notation (Matrices and Vectors), related to a post in Mapleprimes from October/29. Attached is a demo illustrating the idea.

Everybody is welcome to bring suggestions and post issues. You can do that directly in Mapleprimes or writing to While Differential Equations and Mathematical Functions are two areas where the Maple system is currently more mature than in Physics, these two areas cover so many subjects, including that there are the Research and the Education perspectives, that the number of possible topics is immense. 


Edgardo S. Cheb-Terrab
Physics, DEs and Mathematical Functions, Maplesoft

Fourteen Clickable Calculus examples have been added to the Teaching Concepts with Maple area of the Maplesoft web site. Four are sequence and series explorations taken from algebra/precalculus, four are applications of differentiation, four are applications of integration, and two are problems from the lines-and-planes section of multivariate calculus. By my count, this means some 111 Clickable Calculus examples have now been posted to the section.

Thirteen Clickable Calculus examples have been added to the Teaching Concepts with Maple section of the Maplesoft web site. The additions include examples in algebra, differential and integral calculus, lines-and-planes in multivariate calculus, and linear algebra. By my count, this means some 97 Clickable Calculus examples are now available.

In the Algebra/Precalculus section, examples of an

Technology is changing the face of education. An obvious statement, of course. Everybody from students to instructors to parents will agree. Over 40 years ago, the introduction of the pocket calculator allowed us to change the focus from menial calculations to applying our knowledge to solve problems and discover the power of mathematics. 

Since then we have seen leaps from innovation to innovation. The personal computer. Computer Algebra systems. Tablet computing....

Ten more Clickable Calculus solutions have been added to the Teaching Concepts with Maple section of the Maplesoft web site. Solutions to problems include examples in algebra, differential and integral calculus, lines-and-planes in multivariate calculus, linear algebra, and vector calculus.

The algebra additions include an example illustrating how a

Recently, a Maplesoft customer service representative received an e-mail from one of our users with the subject line: A Simple Thank You. We wanted to share this message with you, as it demonstrates how the power and flexibility of Maple helped one student get ahead in his studies.

The following is an actual email we received from Eli E., which describes his experience using Maple as a university student.

Hello, my name is Eli...

Dear Maple users

I like to use animations in Maple for different educational purposes. The other day I tried making an animation simulating a simplified Epicycle, which is a small circle with its centre running on a larger circle. The smaller one has a ball running on it with a constant velocity. I used the following code:

> with(plots);
> with(plottools);
> omega := 1; k := 5; R := 5; r := 2;
> plot1 := plot([R*cos(omega*t), R*sin(omega*t), t = 0 .. 2*Pi]);

Eleven new Clickable-Calculus examples have been added to the Teaching Concepts with Maple section of the Maplesoft website. That means some 74 of the 154 solved problems in my data-base of syntax-free calculations are now available. Once again, these examples and associated videos illustrate point-and-click computations in support of the pedagogic message of resequencing skills and concepts.

This message has been articulated in ...

With the addition of ten new Clickable-Calculus examples to the Teaching Concepts with Maple section of the Maplesoft website, we've now posted 63 of the 154 solved problems in my data-base of syntax-free calculations. Once again, these examples and associated videos illustrate point-and-click computations, but more important, they embody the

My list of problems solved with Clickable-Calculus syntax-free techniques now numbers 154, spread over eight subject areas. Recently, Maplesoft posted to its website 44 of these problems, along with videos of their point-and-click solutions. Not only do these solutions demonstrate Maple functionalities, but they also have a pedagogic message, that is resequencing skills and concepts. They show how Maple can be used to obtain a solution, then show how Maple can be used to implement...

3D MEGEbank...

June 11 2012 Valery Cyboulko 120 Maple

Being easy to use is nice, but being easy to learn with is better. Maple’s ease-of-use paradigm, captured in the phrases “Clickable Calculus” and “Clickable Math” provides a syntax-free way to use Maple. The learning curve is flattened. But making Maple easy to use to use badly in the classroom helps neither student nor instructor.

In the mid to late ‘80s,...

1 2 Page 1 of 2