Items tagged with engineering engineering Tagged Items Feed

When doing numerical calculations or evaluations it is very useful to have float results shown in numeric notation, where the exponent is 3 * n.

Below are some simple calculations:

Is there a way to make Maple show the resultin (1) .. (3) as:

  • 333.3 106
  • 333.3 103
  • 333.3 100 or just 333.3

 

Recently, entered a engineering graduate program and will be taking a graduate engineering class in my retirement.  In our Into classes we reviewed engineering math through ODE. In the second class, we performed some numerical methods using MatLab with a small introduction.  My formal Math wass in the 1980s, but now have to fire it up for a Engineering Analysis using Michael Greenberg's Advanced Engineering Mathematics, 2nd which has Maple imbedded code and directions.

 

What would be my assignment for getting up to speed with using Maple to solve algebraic-symbol-programming problems? For instance, which tutorials in what order, or webinars? i think I once had Fortran 77 and remember zip.

 

Appreciate any good advice.

MathMan2

We've added a collection of thermal engineering applications to the Application Center. You could think of it as an e-book.

This collection has a few features that I think are pretty neat

  • The applications are collected together in a Workbook; a single file gives you access to 30 applications
  • You can navigate the contents using the Navigator or a hyperlinked table of contents
  • You can change working fluids and operating conditions, while still using accurate thermophysical data

If you don't have Maple 2016, you can view and navigate the applications (and interactive with a few) using the free Player.

The collection includes these applications.

  • Psychrometric Modeling
    • Swamp Cooler
    • Adiabatic Mixing of Air
    • Human Comfort Zone
    • Dew Point and Wet Bulb Temperature
    • Interactive Psychrometric Chart
  • Thermodynamic Cycles
    • Ideal Brayton Cycle
    • Optimize a Rankine Cycle
    • Efficiency of a Rankine Cycle
    • Turbine Analysis
    • Organic Rankine Cycle
    • Isothermal Compression of Methane
    • Adiabatic Compression of Methane
  • Refrigeration
    • COP of a Refrigeration Cycle
    • Flow Through an Expansion Valve
    • Food Refrigeration
    • Rate of Refrigerant Boiling
    • Refrigeration Cycle Analysis 1
    • Refrigeration Cycle Analysis 2
  • Miscellaneous
    • Measurement Error in a Manometer
    • Particle Falling Through Air
    • Saturation Temperature of Fluids
    • Water Fountain
    • Water in Piston
  • Heat Transfer
    • Dittus-Boelter Correlation
    • Double Pipe Heat Exchanger
    • Energy Needed to Vaporize Ethanol
    • Heat Transfer Coefficient Across a Flat Plate
  • Vapor-Liquid Equilibria
    • Water-Ethanol

I have a few ideas for more themed Maple application collections. Data analysis, anyone?

Maple is a scientific software based on Computational Algebraic System (SAC) which has enabled this work entirely solve applied to Civil Engineering, Mechanical and Mecatrónica.The present problems in education, research and engineering are developed with static work sheets ie coding used innecesaria.Maple proposed models are shown below with an innovative structure; with the method of graphics algorithms and embedded components; putting aside the traditional and obsolete syntax; using dynamic worksheets as viable and optimal solutions to interpret and explain problems Ingineering.Design Advanced Analysis Tools (Applied Mathematics) Sophisticated Applications (efficient algorithms) and Multiple deployment options (different styles); this allowed generate math apps (applications engineering); can be interactive on the internet without the need to have the software installed on our computer; This way our projects can be used with a vision of sustainability around the world. Resulting in the generation of data and curves; which in turn will help you make better decisions analytical and predictive modeling in manufacturing and 3D objects; which would lead to new patterns of contrasting solutions.

ECI_2016.pdf

ECI_2016v_full.mw

Lenin Araujo Castillo

Ambassador of Maple - Perú

 

 

 

Valery Ochkov and Volodymyr Voloshchuk have developed a series of thermal engineering applications in Maple 2016. The applications explore steam turbine power generation and refrigeration cycles, and use the ThermophysicalData package for fluid properties.

Their work can be found at the following locations on the Application Center.

I especially like

  • this application, which optimizes the extraction pressures of a steam turbine to maximize its efficiency,
  • and this application, which plots the state of a two-stage refrigeration cycle on a pressure-enthalpy chart.

In this course you will learn automatically using Maple course Statics applied to civil engineering especially noting the use of components properly. Let us see the use of Maple to Engineering.

Static_for_Engineering.mw

(in spanish)

Atte.

Lenin Araujo Castillo

Ambassador of Maple

Hello, I'm new to Maple and have a problem with making some electrical engineering.

I miss the unit VA (volt-ampere) which is used in AC. Maple won't recognize it and when I type it separately it changes to W (watt).

Hope someone can help me, thank!

By the way, how do you insert "Maple Code" in here?

In this paper we will demonstrate the importance of using simple to complex algorithms applied to complex systems in civil and mechanical engineering. In order to develop solutions that developers need to be involved in issues of advanced dynamic computer science. We show how is that with the Maple scientific program and through component-based algorithms can generate power then then be inserted into specific algorithms. Will form patterns with movements of rotation and revolution of their axes, in each case to model and analyze the curves thereof comprising. With these modelalos and curve analysis we can predict manufacturing costs, freight, inter alia estrcturas which they can be used with the correct use of Maplesoft.

 

IX_Fast_2016.pdf

Solid_Algorithms_applied_in_complex_3D_structures_for_Civil_Engineering_with_Maplesoft.mw

(in spanish)

Lenin Araujo Castillo

 

 

 

 

ABSTRACT. In this paper we demonstrate how the simulation of dynamic systems engineering has been implemented with graphics software algorithms using maple and MapleSim. Today, many of our researchers the computational modeling performed by inserting a piece of code from static work; with these packages we have implemented through the automation components of kinematics and dynamics of solids simple to complex.

It is very important to note that once developed equations study; recently we can move to the simulation; to thereby start the physical construction of the system. We will use mathematical and computational methods using the embedded buttons which lie in the dynamics leaves and viewing platform cloud of Maplesoft and power MapleNet for online evaluation of specialists in the area. Finally they will see some work done; which integrate various mechanical and computational concepts implemented for companies in real time and pattern of credibility.

 

Selasi_2015.pdf

(in spanish)

 

Lenin Araujo Castillo

 

 

In this paper we will demonstrate the many differences of implementation in the modeling of mechanical systems using embedded components through Maplesoft. The mechanical systems are used for different tasks and therefore have different structure in its design; as to the nature of the used functional elements placed on them, they vary greatly. This diversity is reflected in approaches and practices in modeling.

The following cases focus on mechanical components of the units manufacturing and processing machines. We can generate graphs for analysis using different dynamic pair ametros; all in real-time considerations in its manufacturing costs from the equations of conservation of energy.
Therefore modeling with Maplesoft ensures the smooth optimum performance in mechanical systems, highlighting the sustainability criteria for other areas of engineering.

 

XXXIII_Coloquio_SMP_2015.pdf

XXXIII_Coloquio_UNASAM_2015.mw

(in spanish)

L.AraujoC.

 

 

Here the potential of maple 2015 to the quantitative study of the decomposition of a vector table is shown in two dimensions. Application for the exclusive use of engineering students, which was implemented with embedded components.

Atte.

Lenin Araujo Castillo

Archivo Corregido:  Decomposición_Vectorial_Corregido.mw

Hello, Currently when I calculate something, for example R=U/A where R is resistance, U is voltage and A is current, I get the answer in Volt/Ampere in stead of ohm. How do I change that?

Then, if the result is something like 3.124*10^-4 , how do I make maple output this in an engineering way, this would be 10^3, 10^6, 10^9 etc. to begin with?

Sorry if I formulate this wrongly, English is not my first language and I could not find an answer to this after some research.

Thank you

 

UPDATE and solution: for future reference:

You don't need to type out the whole unit like this:

1.0*Unit(volt)/(2000.0*Unit(ampere));

in stead you can do this:

(1.0*V)/(2000.0*A);

I got the V and A from the SI Units palette on the left hand side,

 ---

To answer my own question about the engineering notation, this can be "forced" by clicking on "Format" -> "Numeric Formating..." -> Engineering and then choosing the number of decimals. apply and set as default. After you are going to have to copy and recalculate your math as the !!! wont do it.

In this work the theme of vector analysis shown from a computational point of view; this being a very important role in the engineering component; in civil and mechanical special it is why, using the scientific software Maple develops interactive solutions for long processes through MapleCloud calculations. At present the majority of professors / researchers perform static classes open source leaves; so that our students learn and memorize commands, thus generating more time learning in the area. Loading Bookseller VectorCalculus develop topics: vector algebra, differential operators, conservative fields, etc. Maplesoft making processes provide immediate calculations long operation Embedded Components displayed in line with MapleNet integrations. Today our future engineers to design solutions and will be launched in the cloud thus being a process with global qualification in the specialty. Significantly Maple is a scientific software which allows the researcher to design their own innovations and not use themes for their manufacturers.

 

III_CRF_2015.pdf

CRF_2015.mw

 

L.AraujoC.

 

 

In this paper of presents under a totally modern sound environment dynamics; using embedded components that gives us the Cybernet Company through its product Maple 2015. Using classical techniques vector equations describe the particle, particle system and solid bodies. We note that the solutions o ered by this software motivate students civil and mechanical engineering to nd optimal answers. Integrating algorithms own programming language and solid mechanics using buttons we relate the movement of translation and rotation with reference to its center of mass.
Choosing envelopes graphical methods, functional programming and mathematical computer display modeling reached alternatives to achieve the next generation of engineers. Therefore this work show that the use of
embedded components allow us to merge the traditional and the computer; It means that all these equations using physical and propose viable criteria we perform in a dynamic sheet; which they have a number of components; then generate simulations with real objects.

Congreso COMAP 2015.pdf

Study of the Dynamics of the Solid with Embedded Components in Civil Engineering with Maplesoft.mw

(in spanish)

L.AraujoC.

For the past thirty years, I have used several mathematical packages for problem solving and graphing. It all started with spreadsheet software that really helped speedup calculations compared to calculators. As many people do, once I had one tool I then started looking for another that would offer even more capabilities and features. I tested several of the very early math software but none really did all that I wanted until I came across Maple while I was working at SPAR Aerospace in Canada. For me, the rest is history. As long as I had a copy of Maple, it was all that I needed.

On occasions when I did not have a copy of this amazing software, I resorted to spreadsheets once more to complete fairly large and complex projects involving large databases and large numbers of calculations, especially when performing What-If scenarios. One distinct disadvantage of using a spreadsheet was the cryptic form of equation writing. I had to divide one long equation into several sections in different cells and then add them all up, which clearly is not good for documentation of the calculations. It is also very confusing for other engineers to know what that equation is or what it does. The development of the full engineering spreadsheet took months to complete, debug and verify. During this process, when I had errors, it was often very difficult to track exactly where the problem was, making the debugging process time consuming and sometimes very frustrating.

Having worked with Maple before, I remembered how easy it was to enter equations in a very familiar, readable math format. The real power of this software is that it allows you to write the equation(s) anyway you like and solve for any given parameter, unlike spreadsheets where you have to solve the problem first, by hand, for the parameter you want and then get the spreadsheet to calculate the value. I remember one time a few years ago when I wrote nine or ten simultaneous differential equations all in symbolic form and asked Maple to calculate certain parameters in a fully symbolic form. To my utmost disbelief, the answer came back within few minutes. With results in hand, I was able to quickly finish my research, and the results were published at PCIM Europe 2005 in “Distributed Gate ESR and its Effect on Shoot Through Performance at the Die Level”. I would never have gotten the results I needed if I was using a spreadsheet.

Even with much simpler systems of equations, finding solutions with a paper and pencil was never an easy task for me. It took a very long time, and even then there was no guarantee that I did not make copying errors, accidentally leave out a term, or make a calculation error. After I found the correct solution, I then had the problem of plotting the results, which I often needed in 3-D. Plotting allowed much deeper insights into the interdependency of all the parameters and made it easy for me to concentrate on the important ones without wasting any time. I was very happy when I could pass all these tasks onto Maple, which could do them much faster and more reliably then I ever could. Maple is a software that allows me to go beyond routine engineering calculations and gives me the tools to reach levels of insight and understanding that were completely out of reach of the average engineer until a few years ago.

For the record, I have no business affiliations with Maplesoft. I’m writing this article because Maple makes such a difference in my work that I feel it is important to share my experiences so other engineers can get the same benefits.

1 2 3 4 5 6 Page 1 of 6