a problem in fsolve...

hello.i have a problem for solving this equation.i dont why my past post about this is deleted.!!!

thanks,,,

restart:

A1:= 27159:  n:= 0.59:  A2:= 70941:  h0:= 3e-4:
L:= 0.8:  dpx := -98100:  uc:= 0.007:  k:=2.7:

ODE:= (A3,y)->
(h0^(n+1)*L/sqrt(n)*(A1*exp(sqrt(n)*y/L)-A2*exp(-sqrt(n)*y/L))/k+dpx*y*h0^(n+1)/k+A3*(h0)^n/k)^(1/n)
;

 (1)

ODEINT:= proc(A3)
option remember;
local y;
evalf(Int(ODE(A3,y), y= 0..1, epsilon= 1e-7)) - uc
end proc:

ReINT:= proc(A3x, A3y)
Digits:= 15:
Re(ODEINT(A3x + I*A3y))
end proc:

ImINT:= subs(Re= Im, eval(ReINT)):

Digits:= 7:
a3:= fsolve([ReINT, ImINT]);

 (2)

A3:= Complex(a3[]);

 (3)

Solve as IVP:

Digits:= 15:
sol:= dsolve({diff(u(y),y) = ODE(A3,y), u(0)=0}, numeric, range=0..1,  output=listprocedure):

 >
 >

plots:-odeplot(
sol, [[y, Re(u(y))], [y, Im(u(y))]], y= 0..1,
legend= [real, imag], labels= [y, u(y)]
);

Verify that boundary condition at u(1) is satisfied:

abs(eval(u(y), sol(1)) - uc);

sol(.5);

 >

parametric equation...

I have a parametric equation which want to solve it , but maple does not .

problem.mw

best regards

can maple match a equation structure regardless of...

if just expect to find whether equation is like

(a-b)*(c-d) + (e-f)*(g-h) = i

if use equal , it will care the variable name, is it possible treat the variable name as a wildcard to match the equation structure only

the structure i mean is *, +, -, =, ()

Why doesn't this code works ? how can it work ?...

I'm trying to generate 100 equation to solve them numerically , buy maple won't let me , here's the code :

for i by 0 to 99 do
a := a[i]+a[i+1] = i^2
end do ;

How to solve this equation with allsolutions...

Hi all,

I have this equation that I can not get all solutions symbolically:

restart:

eq1 := cos(lambda*ln(r1))*cos(lambda*ln(r2))+sin(lambda*ln(r1))*sin(lambda*ln(r2))-1 = 0:

solve(eq1, lambda, allsolutions) assuming r1>0, r2>0, r2>r1

when r1:=1: r2:=2: I get the solution

2*Pi*Z/ln(2)

when r1:=1.1: and r2:=2.1: # no solutions

How to get symbolique solution

Thanks

Can Maple find a determinant corresponding to a sy...

For exaqmple, the quadratic equation w^2 + uw + v = 0 corresponds to the deter minant

| -u  1  1  |

| v    0  1  |  = 0

|w^2 w w-1|

Is there any way to find a determinant corresponding to an equation, as above?

This is an issue in the preparation of a nomograph for the initial equation.

It is generally solved by trial and error.

How do I solve a differential equation in Maple?...

How do I solve a differential equation in maple? Is there a specific identity that you can use?

how to get the coordinate of a swirl ...

http://mathforum.org/kb/message.jspa?messageID=685890

i find equation above

for ii from 0 by 5 to 365 do
eq1 := x^2 + y^2 = arccos(x/r);
eq2 := y = evalf((atan(-1) - ii*Pi/180)/Pi)*(-1.0)*x;
xy := fsolve({eq1, eq2});
print("M",rhs(xy[1]),rhs(xy[2]),","):
od:

but i do not understand how to set r

i use a line scanning 365 degrees to get the path of swirl

would like to get path data for c# WPF animation

but this method may have multiple solution because an intersection of swirl

and a line can have multiple points

Application of first order equations

Maple 2016

It is very important that you learn to pose and solve equations in practical problems. Ernest Mach, a famous scientist of the nineteenth century, said that algebra is characterized by a lightening of mind, because the solution of a problem, after building the equation, you can "forget" all the practical situation to focus on the mathematical expression; everything that is not necessary to solve the problem no longer interfere with your mind. Another famous scientist, Isaac Newton, wrote that the language of algebra is the equation. To see a problem concerning abstract relations of numbers or amounts, simply translate the problem of colloquial language to the algebraic language. Here I leave the application for first order equations developed in 2016 Maple.

(In Spanish)

Lenin Araujo Castillo

With(rootfinding) Isolate help!!...

I am having 26th degree polynomial univariate equation , I used Isolate to get the roots. but I am getting some extra roots which are not true they I even tried to substitute those roots in original equation then I got non zero answer instead of getting nearly zero answer.How is it possible??

equation looks like:

-12116320194738194778134937600000000*t^26+167589596741213731838990745600000000*t^24+1058345691529498270472972795904000000*t^22-4276605572538658673086219419648000000*t^20-23240154739806540070988490473472000000*t^18-5442849111209103187871341215744000000*t^16+49009931453396028716875310432256000000*t^14+74247033158233643322704589225984000000*t^12-2762178990802317464801412907008000000*t^10-25947900993773120244883450232832000000*t^8-7468990043547273070742668836864000000*t^6-567730116675454293925108383744000000*t^4+3703566799705707258760396800000000*t^2-4742330812072533924249600000000

Solutions i got:

[t = -4.162501845, t = -2.295186769, t = -1.300314688, t = -.8048430445, t = -0.6596008501e-1, t = -0.4212510777e-1, t = 0.4212510777e-1, t = 0.6596008501e-1, t = .8048430445, t = 1.300314688, t = 2.295186769, t = 4.162501845]

t=4.162501845 give me non zero answer when I substitute it in the equation given above:

Fundamental theorem of calculus...

Hello people in mapleprime,

Though I wrote the title as Fundamental theorem of calculus,

what I am considering is just how to continue the chain of codes in calculation.

restart;

#I defined F__0 as

F__0:=x->Int(f(t),t=a..x);

#Then, the difference between a primitive function of f(x), F(x), and F__0 is no more than a constant C, so I write.

bb:=F(x)-F__0(x)=C;

#Then, substituting "a" into equation "bb", I obtain the value of F(a)

bb1:=subs(x=a,bb):cc:=simplify(%);

#Then, I substituted the value of C in "bb1" into "bb,"  obtaining the following "cc1."

cc1:=subs(isolate(cc,C),bb);

#And, then, I isolated the term of Int(f(t),t=a..x)  in cc1,

dd:=isolate(cc1,Int(f(t), t = a .. x));

#And, then, I substitute x=b into the outcome of dd, and obtain the final equation.

subs(x=b,dd);

Surely, with the above code, I could get the fundamental theorem. But, it looks in a little roundabout way.

So, I thought I would ask here about whether there aren't any better ways to do the fundamentally the same thing or

hints to improve the above code.

taro

simultaneous equation...

Hi,

I have attached a Maple file. My problem is that the solve for the simultaneous equation does not give me understandable results. I even simplified my equations by saying some parameters are zero although my final goal is to find an expression for a and varphi. Any idea how to solve this analytically? I know how to do it numerically. I need an analytical expression.

Thanks,

Baharm31

Find roots in equation with 3 variable...

Hello,how can i find the lambda in this equation? and x=0..2 , t=0..2

PDE solutions: when are they "general"?

by: Maple

Hi,
The latest update to the differential equations Maple libraries (this week, can be downloaded from the Maplesoft R&D webpage for Differential Equations and Mathematical functions) includes new functionality in pdsolve, regarding whether the solution for a PDE or PDE system is or not a general solution.

In brief, a general solution of a PDE in 1 unknown, that has differential order N, and where the unknown depends on M independent variables, involves N arbitrary functions of M-1 arguments. It is not entirely evident how to extend this definition in the case of a coupled, possibly nonlinear PDE system. However, using differential algebra techniques (automatically used by pdsolve when tackling a PDE system), that extension to define a general solution for a DE system is possible, and also when the system involves ODEs and PDEs, and/or algebraic (that is, non-differential) equations, and/or inequations of the form  involving the unknowns, and all of this in the presence of mathematical functions (based on the use of Maple's PDEtools:-dpolyform). This is a very nice case were many different advanced developments come together to naturally solve a problem that otherwise would be rather difficult.

The issues at the center of this Maple development/post are then:

a) How do you know whether a PDE or PDE system solution returned is a general solution?

b) How could you indicate to pdsolve that you are only interested in a general PDE or PDE system solution?

The answer to a) is now always present in the last line of the userinfo. So input infolevel[pdsolve] := 3 before calling pdsolve, and check what the last line of the userinfo displayed tells.

The answer to b) is a new option, generalsolution, implemented in pdsolve so that it either returns a general solution or otherwise it returns NULL. If you do not use this new option, then pdsolve works as always: first it tries to compute a general solution and if it fails in doing that it tries to compute a particular solution by separating the variables in different ways, or computing a traveling wave solution or etc. (a number of other well known methods).

The examples that follow are from the help page pdsolve,system, and show both the new userinfo telling whether the solution returned is a general one and the option generalsolution at work.The examples are all of differential equation systems but the same userinfos and generalsolution option work as well in the case of a single PDE.

Example 1.

Solve the determining PDE system for the infinitesimals of the symmetry generator of example 11 from Kamke's book . Tell whether the solution computed is or not a general solution.

 >
 (1.1)

The PDE system satisfied by the symmetries of Kamke's ODE example number 11 is

 >

This is a second order linear PDE system, with two unknowns  and four equations. Its general solution is given by the following, where we now can tell that the solution is a general one by reading the last line of the userinfo. Note that because the system is overdetermined, a general solution in this case does not involve any arbitrary function

 >
 -> Solving ordering for the dependent variables of the PDE system: [xi(x,y), eta(x,y)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, y] tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) <- Returning a *general* solution
 (1.2)

Next we indicate to pdsolve that  and  are parameters of the problem, and that we want a solution for , making more difficult to identify by eye whether the solution returned is or not a general one. Again the last line of the userinfo tells that pdsolve's solution is indeed a general one

 >
 (1.3)
 >
 -> Solving ordering for the dependent variables of the PDE system: [r, n, xi(x,y), eta(x,y)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, y] tackling triangularized subsystem with respect to r tackling triangularized subsystem with respect to n tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) tackling triangularized subsystem with respect to r tackling triangularized subsystem with respect to n tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) tackling triangularized subsystem with respect to r tackling triangularized subsystem with respect to n tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) tackling triangularized subsystem with respect to n tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) tackling triangularized subsystem with respect to n tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) tackling triangularized subsystem with respect to xi(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to eta(x,y) <- Returning a *general* solution
 (1.4)
 >
 (1.5)

Example 2.

Compute the solution of the following (linear) overdetermined system involving two PDEs, three unknown functions, one of which depends on 2 variables and the other two depend on only 1 variable.

 >

The solution for the unknowns G, H, is given by the following expression, were again determining whether this solution, that depends on 3 arbitrary functions, , is or not a general solution, is non-obvious.

 >
 -> Solving ordering for the dependent variables of the PDE system: [F(r,s), H(r), G(s)] -> Solving ordering for the independent variables (can be changed using the ivars option): [r, s] tackling triangularized subsystem with respect to F(r,s) First set of solution methods (general or quasi general solution) Trying differential factorization for linear PDEs ... differential factorization successful. First set of solution methods successful tackling triangularized subsystem with respect to H(r) tackling triangularized subsystem with respect to G(s) <- Returning a *general* solution
 (1.6)
 >
 (1.7)

Example 3.

Compute the solution of the following nonlinear system, consisting of Burger's equation and a possible potential.

 >

We see that in this case the solution returned is not a general solution but two particular ones; again the information is in the last line of the userinfo displayed

 >
 -> Solving ordering for the dependent variables of the PDE system: [v(x,t), u(x,t)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, t] tackling triangularized subsystem with respect to v(x,t) tackling triangularized subsystem with respect to u(x,t) First set of solution methods (general or quasi general solution) Second set of solution methods (complete solutions) Trying methods for second order PDEs Third set of solution methods (simple HINTs for separating variables) PDE linear in highest derivatives - trying a separation of variables by * HINT = * Fourth set of solution methods Trying methods for second order linear PDEs Preparing a solution HINT ... Trying HINT = _F1(x)*_F2(t) Fourth set of solution methods Preparing a solution HINT ... Trying HINT = _F1(x)+_F2(t) Trying travelling wave solutions as power series in tanh ... * Using tau = tanh(t*C[2]+x*C[1]+C[0]) * Equivalent ODE system: {C[1]^2*(tau^2-1)^2*diff(diff(u(tau),tau),tau)+(2*C[1]^2*(tau^2-1)*tau+2*u(tau)*C[1]*(tau^2-1)+C[2]*(tau^2-1))*diff(u(tau),tau)} * Ordering for functions: [u(tau)] * Cases for the upper bounds: [[n[1] = 1]] * Power series solution [1]: {u(tau) = tau*A[1,1]+A[1,0]} * Solution [1] for {A[i, j], C[k]}: [[A[1,1] = 0], [A[1,0] = -1/2*C[2]/C[1], A[1,1] = -C[1]]] travelling wave solutions successful. tackling triangularized subsystem with respect to v(x,t) First set of solution methods (general or quasi general solution) Trying differential factorization for linear PDEs ... Trying methods for PDEs "missing the dependent variable" ... Second set of solution methods (complete solutions) Trying methods for second order PDEs Third set of solution methods (simple HINTs for separating variables) PDE linear in highest derivatives - trying a separation of variables by * HINT = * Fourth set of solution methods Trying methods for second order linear PDEs Preparing a solution HINT ... Trying HINT = _F1(x)*_F2(t) Third set of solution methods successful tackling triangularized subsystem with respect to u(x,t) <- Returning a solution that *is not the most general one*
 (1.8)
 >
 (1.9)

This example is also good for illustrating the other related new feature: one can now request to pdsolve to only compute a general solution (it will return NULL if it cannot achieve that). Turn OFF userinfos and try with this example

 >

This returns NULL:

 >

Example 4.

Another where the solution returned is particular, this time for a linear system, conformed by 38 PDEs, also from differential equation symmetry analysis

 >

There are 38 coupled equations

 >
 (1.10)

When requesting a general solution pdsolve returns NULL:

 >

A solution that is not a general one, is however computed by default if calling pdsolve without the generalsolution option. In this case again the last line of the userinfo tells that the solution returned is not a general solution

 >
 (1.11)
 >
 -> Solving ordering for the dependent variables of the PDE system: [eta[1](x,y,z,t,u), xi[1](x,y,z,t,u), xi[2](x,y,z,t,u), xi[3](x,y,z,t,u), xi[4](x,y,z,t,u)] -> Solving ordering for the independent variables (can be changed using the ivars option): [t, x, y, z, u] tackling triangularized subsystem with respect to eta[1](x,y,z,t,u) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F1(x,y,z,t), _F2(x,y,z,t)] -> Solving ordering for the independent variables (can be changed using the ivars option): [t, x, y, z, u] tackling triangularized subsystem with respect to _F1(x,y,z,t) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F3(x,y,z), _F4(x,y,z)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, y, z, t] tackling triangularized subsystem with respect to _F3(x,y,z) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to _F4(x,y,z) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F5(y,z), _F6(y,z)] -> Solving ordering for the independent variables (can be changed using the ivars option): [y, z, x] tackling triangularized subsystem with respect to _F5(y,z) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to _F6(y,z) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F7(z), _F8(z)] -> Solving ordering for the independent variables (can be changed using the ivars option): [z, y] tackling triangularized subsystem with respect to _F7(z) tackling triangularized subsystem with respect to _F8(z) tackling triangularized subsystem with respect to _F2(x,y,z,t) First set of solution methods (general or quasi general solution) Trying differential factorization for linear PDEs ... Trying methods for PDEs "missing the dependent variable" ... Second set of solution methods (complete solutions) Third set of solution methods (simple HINTs for separating variables) PDE linear in highest derivatives - trying a separation of variables by * HINT = * Fourth set of solution methods Preparing a solution HINT ... Trying HINT = _F3(x)*_F4(y)*_F5(z)*_F6(t) Third set of solution methods successful tackling triangularized subsystem with respect to xi[1](x,y,z,t,u) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F1(x,z,t), _F2(x,z,t)] -> Solving ordering for the independent variables (can be changed using the ivars option): [t, x, z, y] tackling triangularized subsystem with respect to _F1(x,z,t) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to _F2(x,z,t) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F3(x,t), _F4(x,t)] -> Solving ordering for the independent variables (can be changed using the ivars option): [t, x, z] tackling triangularized subsystem with respect to _F3(x,t) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to _F4(x,t) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F5(x), _F6(x)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, t] tackling triangularized subsystem with respect to _F5(x) tackling triangularized subsystem with respect to _F6(x) tackling triangularized subsystem with respect to xi[2](x,y,z,t,u) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful -> Solving ordering for the dependent variables of the PDE system: [_F1(t), _F2(t)] -> Solving ordering for the independent variables (can be changed using the ivars option): [t, z] tackling triangularized subsystem with respect to _F1(t) tackling triangularized subsystem with respect to _F2(t) tackling triangularized subsystem with respect to xi[3](x,y,z,t,u) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful tackling triangularized subsystem with respect to xi[4](x,y,z,t,u) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. First set of solution methods successful <- Returning a solution that *is not the most general one*
 (1.12)
 >
 (1.13)

Example 5.

Finally, the new userinfos also tell whether a solution is or not a general solution when working with PDEs that involve anticommutative variables  set using the Physics  package

 >
 (1.14)

Set first  and  as suffixes for variables of type/anticommutative  (see Setup )

 >
 (1.15)

A PDE system example with two unknown anticommutative functions of four variables, two commutative and two anticommutative; to avoid redundant typing in the input that follows and redundant display of information on the screen let's use PDEtools:-diff_table   PDEtools:-declare

 >
 (1.16)
 >
 (1.17)

Consider the system formed by these two PDEs (because of the q diff_table just defined, we can enter derivatives directly using the function's name indexed by the differentiation variables)

 >
 (1.18)
 >
 (1.19)

The solution returned for this system is indeed a general solution

 >
 -> Solving ordering for the dependent variables of the PDE system: [_F4(x,y), _F2(x,y), _F3(x,y)] -> Solving ordering for the independent variables (can be changed using the ivars option): [x, y] tackling triangularized subsystem with respect to _F4(x,y) tackling triangularized subsystem with respect to _F2(x,y) tackling triangularized subsystem with respect to _F3(x,y) First set of solution methods (general or quasi general solution) Trying simple case of a single derivative. HINT = _F6(x)+_F5(y) Trying HINT = _F6(x)+_F5(y) HINT is successful First set of solution methods successful <- Returning a *general* solution
 (1.20)
 >

This solution involves an anticommutative constant , analogous to the commutative constants  where n is an integer.

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft