Items tagged with equation equation Tagged Items Feed

Hello!
Please help solve this equation!

restart;

Dd:=4.9*10^(-10):
n:=4.5:
m:=3.5:
ny:=20:
B:=1.47*10^(-11):
H1:=70:
H2:=20:
H:=100:
b1:=40:
b2:=80:
delt_y:=H/ny:
A_max:=b1*H1+b2*H2+10*b1:
M:=1000:




b:=y->piecewise(`and`(y>=0,y<=H1),b1,`and`(y>H1,y<H1+H2),b2,`and`(y>=H1+H2,y<=H),b1):
y:=0: eq:=0:

for j from 1 to ny do
y:=(j-1)*delt_y+delt_y/2;

eq:=evalf(eq+b(y)*sign(y-y0)*abs((y-y0))^(1/n)*delt_y);
end do;


#eq=0, y0-?
sol1:=fsolve({eq=0},{y0});

Hi all,

 

It's been a while since I have used Maple. To be honest I haven't used it for over six years.

 

I am trying to solve simple differential equations, however I have many issues.

 

I am trying to simulate what author of this paper did 06421188.pdf

 

My file looks like this (Pendulum.mw)

 

Can someone help me to simulate this system? I simply can't remember how to do it.

 

Cheers,

Bart

Hello there

I'm quite an amature so please don't judge.  I'm trying to use fsolve to solve a system of non-linear equations but Maple is just "spitting" on me the equations with no intention to solve them:

> delta5 := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+zeq^2)*(sqrt(x^2+zeq^2)*x))+x*zeq/sqrt(x^2+zeq^2)^3)/(2*Pi*E5);
print(`output redirected...`); # input placeholder
> shrinkage := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Zb^2)*(sqrt(x^2+Zb^2)*x))+x*Zb/sqrt(x^2+Zb^2)^3)/(2*Pi*E5)-P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Za^2)*(sqrt(x^2+Za^2)*x))+x*Za/sqrt(x^2+Za^2)^3)/(2*Pi*E5);
> eq10 := subs(x = 1800, delta5)+subs(x = 1800, Zb = z2, Za = z1, shrinkage)+subs(x = 1800, Zb = z3, Za = z2, shrinkage)+subs(x = 1800, Zb = z4, Za = z3, shrinkage)+subs(x = 1800, Zb = z5, Za = z4, shrinkage) = 36.7*10^(-3);
print(`output redirected...`); # input placeholder
> eq9 := subs(x = 1500, delta5)+subs(x = 1500, Zb = z2, Za = z1, shrinkage)+subs(x = 1500, Zb = z3, Za = z2, shrinkage)+subs(x = 1500, Zb = z4, Za = z3, shrinkage)+subs(x = 1500, Zb = z5, Za = z4, shrinkage) = 47.2*10^(-3);
print(`output redirected...`); # input placeholder
> eq8 := subs(x = 1200, delta5)+subs(x = 1200, Zb = z2, Za = z1, shrinkage)+subs(x = 1200, Zb = z3, Za = z2, shrinkage)+subs(x = 1200, Zb = z4, Za = z3, shrinkage)+subs(x = 1200, Zb = z5, Za = z4, shrinkage) = 63.8*10^(-3);
> eq7 := subs(x = 900, delta5)+subs(x = 900, Zb = z2, Za = z1, shrinkage)+subs(x = 900, Zb = z3, Za = z2, shrinkage)+subs(x = 900, Zb = z4, Za = z3, shrinkage)+subs(x = 900, Zb = z5, Za = z4, shrinkage) = 91.1*10^(-3);
print(`output redirected...`); # input placeholder
> eq6 := subs(x = 600, delta5)+subs(x = 600, Zb = z2, Za = z1, shrinkage)+subs(x = 600, Zb = z3, Za = z2, shrinkage)+subs(x = 600, Zb = z4, Za = z3, shrinkage)+subs(x = 600, Zb = z5, Za = z4, shrinkage) = 137.9*10^(-3);
> eq5 := subs(x = 450, delta5)+subs(x = 450, Zb = z2, Za = z1, shrinkage)+subs(x = 450, Zb = z3, Za = z2, shrinkage)+subs(x = 450, Zb = z4, Za = z3, shrinkage)+subs(x = 450, Zb = z5, Za = z4, shrinkage) = 175.2*10^(-3);
> eq4 := subs(x = 300, delta5)+subs(x = 300, Zb = z2, Za = z1, shrinkage)+subs(x = 300, Zb = z3, Za = z2, shrinkage)+subs(x = 300, Zb = z4, Za = z3, shrinkage)+subs(x = 300, Zb = z5, Za = z4, shrinkage) = 230.9*10^(-3);
print(`output redirected...`); # input placeholder
> sys := {eq10, eq5, eq6, eq7, eq8, eq9};
print(`output redirected...`); # input placeholder
> fsolve(sys, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400});

and this is what Maple gives after the fsolve

 

fsolve({(3937.500000*(.2/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(450*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3888888889e-2/E5+(3937.500000*(.2/(202500+(650+h4)^2)+(450*(650+h4))/(202500+(650+h4)^2)^(3/2)))/E5 = .1752000000, (3937.500000*(.2/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(600*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2187500000e-2/E5+(3937.500000*(.2/(360000+(650+h4)^2)+(600*(650+h4))/(360000+(650+h4)^2)^(3/2)))/E5 = .1379000000, (3937.500000*(.2/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(900*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.9722222220e-3/E5+(3937.500000*(.2/(810000+(650+h4)^2)+(900*(650+h4))/(810000+(650+h4)^2)^(3/2)))/E5 = 0.9110000000e-1, (3937.500000*(.2/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1200*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.5468750000e-3/E5+(3937.500000*(.2/(1440000+(650+h4)^2)+(1200*(650+h4))/(1440000+(650+h4)^2)^(3/2)))/E5 = 0.6380000000e-1, (3937.500000*(.2/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1500*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3500000000e-3/E5+(3937.500000*(.2/(2250000+(650+h4)^2)+(1500*(650+h4))/(2250000+(650+h4)^2)^(3/2)))/E5 = 0.4720000000e-1, (3937.500000*(.2/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1800*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2430555555e-3/E5+(3937.500000*(.2/(3240000+(650+h4)^2)+(1800*(650+h4))/(3240000+(650+h4)^2)^(3/2)))/E5 = 0.3670000000e-1}, {E1, E2, E3, E4, E5, h4}, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400})

Is it possible to plot the equation 1=x^2+(y-1)^2 within Maple without rewriting it into a function or something like that? I can see that it is an easy to plot circle, but I just wonder whether it is possible.

Hi, I am completely new to Maple, and I need to use it to optimize my equations in order to make my PLC codes more compressed. I am calculating forward kinematics with the Denavit-Hartenberg method and as such I get long expressions. After a lot of google'ing and frustration, I thought I'd ask here in the hope that one of you might be able to assist me.

I have the following equations;

X := L10*cos(q5) - L16*(sin(q10)*(sin(q5)*sin(q8) - cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) - cos(q10)*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)))) - d2*(cos(q10)*(sin(q5)*sin(q8) - cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + sin(q10)*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)))) + L15*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6))) - L11*cos(q5)*sin(q6) + d1*cos(q5)*cos(q6) - L13*sin(q5)*sin(q8) + L14*cos(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + L13*cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7)) - L14*sin(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)) + L12*cos(q5)*cos(q6)*cos(q7) - L12*cos(q5)*sin(q6)*sin(q7);

Y := L10*sin(q5) - L9 + L16*(sin(q10)*(cos(q5)*sin(q8) - cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q10)*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)))) + d2*(cos(q10)*(cos(q5)*sin(q8) - cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) + sin(q10)*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)))) - L15*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6))) + L13*cos(q5)*sin(q8) - L11*sin(q5)*sin(q6) + d1*cos(q6)*sin(q5) - L14*cos(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - L13*cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5)) - L14*sin(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)) + L12*cos(q6)*cos(q7)*sin(q5) - L12*sin(q5)*sin(q6)*sin(q7);

Z := L15*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - L11*cos(q6) - L8 - d1*sin(q6) + L16*(cos(q10)*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - cos(q8)*sin(q10)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - d2*(sin(q10)*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) + cos(q8)*cos(q10)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - L13*cos(q8)*(cos(q6)*sin(q7) + cos(q7)*sin(q6)) - L14*sin(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - L12*cos(q6)*sin(q7) - L12*cos(q7)*sin(q6) - L14*cos(q9)*sin(q8)*(cos(q6)*sin(q7) + cos(q7)*sin(q6));

 

I need to optimize these equations, but still keep them separate. I would like to use mutual expressions for the calculations within, but still as I said keep the outputs of X, Y and Z separate.

This is MATLAB code.

 

Thanks in advance for any help.

Hi,

 

I am new to Maple and have a problem when solving three equations with three variables. But when  I plug in into solve function then it gives no answer.

eqn1 := 24900 = A*exp(-X*1.293995859*10^22)+A*exp(-Y*1.293995859*10^22)+5852.27;

eqn2 := 6000 = A*exp(-X*1.293995859*10^22)+2422.929937;

eqn3 := 19100 = A*exp(-Y*1.293995859*10^22)+8275.199937;

Variables are [A,X,Y]


plot(x^2, x = -2 .. 2)

Error, (in plot) incorrect first argument x^2

 

plot(2);

 

solve(x-1 = 0, x)

Error, (in coulditbe) invalid input: `coulditbe/internal` uses a 1st argument, obj, which is missing

 

``


Download Maple_Worksheet.mw

Hi,

I'm using Maple 18 and none of my worksheets that I've developed on earlier versions work on it. I tried starting a new worksheet with a very simple command (attached) and even that's giving me problems. As you can see, I have no trouble plotting constant functions, but as soon as I put in a variable it breaks down. It won't solve equations either.

FYI I'm using an HP G72 laptop with Windows 7 and no installation issues came up.

Can anyone tell me what's going on here?

Thanks,

Tom

In this section, we will consider several linear dynamical systems in which each mathematical model is a differential equation of second order with constant coefficients with initial conditions specifi ed in a time that we take as t = t0.

All in maple.

 

Vibraciones.mw

(in spanish)

 

Atte.

L.AraujoC.

Hi there

I'm trying to isolate (y1-3)2+(x1-1)in the equation 25(y1-3)2+200+100(x1-1)2=0.

I have tried isolate and solve, but solve coplains about solving for expressions (but when inputting i:=(x1,y1)->(y1-3)2+(x1-1)2 it still doesn't work), and isolate can only isolate either (y1-3)2 or (x1-1). Not both.

How can I do this with as few lines as possible?

Thanks

- Alex

Hi, I'm new to Maple and was trying to use it to solve 3 equations with 3 unknowns, in terms of another 2 parameters. This is what I put in, and the error that came up:

solve({(1-x)/(1+b) = b*y, (1-y)(1-a)/(-a*b+1) = b*z, (1-z)(1-b)/(-a*b+1) = a*x}, {x, y, z}); 

Error, (in SolveTools:-LinearSolvers:-Algebraic) unable to compute coeff

I want to solve the equations to get x,y,z in terms of a,b but I don't understand the error coming up - have I done something wrong or is it because not all the variables appear in all of the equations? As there are 3 equations and 3 unknowns there is a solution, but I want to check the answer I found on paper with something (the algebra got a bit messy!)

Any help greatly appreciated! :)

At the internet site of The Heun Project, a strong declaration is made that only Maple incorporates Heun functions, which arise in the solution of differential equations that are extremely important in physics, such as the solution of Schroedinger's equation for the hydrogen atom.  Indeed solutions appear in Heun functions, which are highly obscure and complicated to use because of their five or six arguments, but when one tries to convert them to another function, nothing seems to work.  For instance, if one inquires of FunctionAdvisor(display, HeunG), the resulting list contains

"The location of the "branch cuts" for HeunG are [sic, is] unknown ..." followed by several other "unknown" and an "unable". Such a solution of a differential equation is hollow.

Incidentally, Maple's treatment of integral equations is very weak -- only linear equations with simple solutions, although procedures by David Stoutemyer from 40 years ago are available to enhance this capability.

When can we expect these aspects of Maple to work properly, for applications in physics?

I am trying to use solve to determine 5 unknowns from 12 equations each with seperate data points); however, maple requires you to have equal number equations and variables. Is there any way around this?

Hi there,

I've got the following differential equation system:,

dU/dt = delta·dotD -lambda·U - kappa·U^2
dL/dt = (1-phi)·lambda·U + 1/4 ·kappa·U^2


being phi, delta, kappa, lambda, kappa some fixed parameters of the system, and where dotD (the derivative wrt time of a function D), which is defined a piecewise funtion:

dotD(t)=1/(3·T1)·DT for t in [0,T1]

dotD(t)=2/(3·(T2-T1-T))·DT for t in [T1+T,T2]

where T and DT are also known, and T1 approaches 0, and T2 approaches T1+T.

Setting the equation system in Maple and trying to solve it, gives a NULL result. However, trying to solve each piece separately seems to work fine.

Why is this?

 

Furthermore, taking limits for the [T1+T,T2] part (having solved each piece separately) yields an invalid limits point error. Ain't the possibility to take limits for both parameters at the same time?

Any ideas?

 

This is the Maple worksheet: MaplePrimes_LQ_model_solve.mw

Thank you.

jon

Hi

y''+(4/x)*y'-a*y^n=0

that a=constant


Hi there,
I have a set of differential equations whose solution, Jacobian matrix and its eigenvalues, direction field, phase portrait and nullclines, need to be computed.

Each of the equations has a varying parameter.

I know how to get the above for a single parameter value, but when I set a range of values for the parameters, Maple is not able to handle all cases as I would expect: solving the differential equation system:

eq1 := x*(1.6*(1-(1/100)*x)-phi*y)
eq2 := (x/(15+x)-0.3e-1*x-.4)*y+.6+theta
desys := [eq1, eq2];
vars := [x, y];
steadyStates := map2(eval, vars, [solve(desys)])

already yields an error:
Error, (in unknown) invalid input: Utilities:-SetEquations expects its 2nd argument, equations, to be of type set({boolean, algebraic, relation}), but received {-600*y+(Array(1..2, {(1) = 8400, (2) = 15900})), Array(1..5, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0})}


The equations are the following:
de1 := diff(x(t), t) = x(t)*(1.6*(1-(1/100)*x(t))-phi*y(t));
de2 := diff(y(t), t) = (x(t)/(15+x(t))-0.3e-1*x(t)-.4)*y(t)+.6+theta

the parameters being:
phi:=[0 0.5 1 1.5 2]
theta:=[5. 10.]

How can I handle the situation so that Maple computes each of the above for each combination of the parameters?

I would like to avoid using two for loops and having to store all results in increasingly bigger and complicated arrays.

The worksheet at issue is this: MaplePrimes_Tumour_model_phi_theta_variation.mw


Thanks,
jon

1 2 3 4 5 6 7 Last Page 1 of 20