## Plot the equation...............

Hi dear users:

i will plot the equation below abs(y) in terms of x,(note:abs(y) and x is real values),can every body help me?

eq:

-32.46753247/(Pi*x^2)+1.053598444*10^8*Pi^2*y/x^2-5.342210338*10^14*Pi^2*y*(2.574000000*10^8*Pi^2-.7700000000*x^2)/((-3.904240733*10^6*x^2+1.305131902*10^15*Pi^2-159.8797200*Pi^2*x^2+2.672275320*10^10*Pi^4+2.391363333*10^(-7)*x^4)*x^2)+1.504285714*10^9*Pi^4*y^3/x^2 = y

## fitting multiple data curves...

i have a non linear equation that depends on three variables e, theta and z.

i have done calculations to calculate e while varying theta and z. theta varied among the vector [0, Pi/4, Pi/3, Pi/2] and z was varying between 1 and 20

when plotting my data it gives the following plot where z is represented on the x-axis and each curve correspond to one theta

i am currently able of fitting one plot to one equation i would like to fit the data points using the nonlinearfit function and to only get one equation for all the plots. is that possible in maple or not

## coupled differential equations numeric solution...

How can I solve a differential equation set of the type,

dy(x)/dx +y^2 =P(x); dP(x)/dx = R(P) numerically

## DEs and Mathematical Functions Updates

by:

This is the first presentation of updates for the DE and Mathematical Functions programs of Maple 18. It includes several improvements, all in the Mathematical Functions sector, as well as some fixes. The update and instructions for its installation are available on the Maplesoft R&D webpage for DEs and mathematical functions. Some of the items below were mentioned here in Mapleprimes - you are welcome to present suggestions or issues; if possible they will be addressed right away in the next update.

• Filling gaps in the FunctionAdvisor regarding all the 6 complex components: abs, argument, conjugate, Im, Re, signum, as well as regarding Heaviside (step function), Dirac, min and max.
• Fix the simplification and differentation rule for doublefactorial
• Make convert(..., hypergeometric) work the same way as convert(blabla, hypergeom)
• Implement integral forms for Heaviside(z) and JacobiAM(z, k) via convert(..., Int)
• Implement appropriate display for the inert %intat function as well as its conversion to the inert Int
• Make the FunctionAdvisor/DE return not just the PDE system satisfied by f(z, k) = JacobiAM(z, k)and also (new) the ODE satisfied by f(z) = JacobiAM(z, k)
• Fix conversion rule from Heaviside(z) to Sum
• Fix unexpected error interruption when differentiating min(...) and max(...) containing more than three arguments
• Fix issue in simplify/conjugate
• Improvement in expand/int: factors in disguise are put outside the integration sign
• Various improvements in the case of multiple integrals involving the Dirac function
• Make Intat fully inert (before it was evaluating its arguments)
• Make value of inert indexed objects work

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

## change of varibales ...

Hi,   I want to substitute every  U[jj+1,-1] by U[jj+1,1] in these lines. Many thanks to send your remarks.
U[jj+1,-1]:=U[jj+1,1];

for jj from 1 to M do:
sys[jj] := eval(BTCS_general,j=jj);
od;

subs(U[jj,M+2]=U[jj,M]; U[jj+1,-1]=U[jj+1,1], sys);

Why in this equation U[jj+1,-1] doesnt changed by U[jj+1,1];
s u[i + 1, -1]   4 s u[i + 1, 0]   6 s u[i + 1, 1]
u[i + 1, 1] + -------------- - --------------- + ---------------
4                4                 4
h                h                 h

4 s u[i + 1, 2]   s u[i + 1, 3]
- --------------- + ------------- = u[i, 1]
4                4
h                h

## Writting system of equation...

Hi ;

I need your help to write the system contains all these equation:

# system 1
u[0,0]:=(1/2)*(u[1,0]+u[0,1]);
u[0,N+1]:=(1/2)*(u[0,N]+u[1,N+1]);
u[N+1,N+1]:=(1/2)*(u[N+1,N]+u[N,N+1]);
u[N+1,0]:=(1/2)*(u[N,0]+u[N+1,1]);
# system 2
for j from 1 to N do
u[0, j] := (1/4)*(u[1,j]+u[1,j]+u[0, j-1]+u[0,j+1]-f[0,j]*h^2);
end do;
# System 3
for j from 1 to N do
u[N+1, j] := (1/4)*(u[N, j]+u[N-1,j]+u[N+1, j-1]+u[N+1, j+1]-f[N+1,j]*h^2);
end do;
system4
eqs := [ seq(seq(Stencil[1](h,i,j,u,f),i=1..N),j=1..N)];

How can collect these system 1 system2, system3 ans system4 in a set with one name.

sys:=[eqs,system3,system2,system2]; ( sys: here contains all the equation).

Thanks you.

## Change Boundary condition from Dirichlet to Neuman...

Hi,

Please I need help in this subject. I would like to compare the numerical solution obtained by finite difference and pdsolve/numeric.

The equation considred is  diffusion Equation using Forward-time centered-space (FTCS) stencil
The code work well with Dirichlet boundary condition, but I want to let  x=-1  Dirichlet boundary condition but on x=1, we put a Neumann condition likeeval( diff(u(t,x),x),x=1)=1. Thank you very much to put the necessary in the attached code the changment.
Many thinks.

## Solve can't find analytically solution... but I ca...

Hi Maple-Prime-ers!

I have a system of equations, containing 18 variables and 13 equations, making this a 5 degree of freedom (DOF) system.  I would like to analytically solve each of the equations in terms of each of these DOFs.  Normally I would use solve(system, dof_variables) to accomplish this, but it doesn't return anything.  Not even [].

I can solve this system by hand.  I've included a hand-solution involving isolate() and subs() in the attached worksheet.  I'm looking to incorporate this in an optimization algorithm with varying system, so I would like an automated way of doing this.

Does anybody have any suggestions to get solve to work as intended?

3driversys_FD_BRAKE_ICE_GEN.mw

Here is the system I am talking about:

The free variables are:  {FD_T, FD_W, ICE_T, EM2_T, BRAKE_T}

I'm looking for a solution in this form:

## Get a simplify equation from this integration...

Hai everyone. I used maple 12 and have an equation as follow:

int(int(lambda[v]*lambda[t]*exp(-lambda[v]*v-lambda[t]*t), v = (1/2)*(q[p]+q[p]*t[c]*t+2*S[di]*h*t)/(h*t) .. infinity), t = 0 .. infinity)

and try to get an outcome as follow:

However, I cannot get the outcome like I want. The maple just diplay the equation. Any tips or suggestion?

Thanks

Regards,

Dolby87

## Maple needs 827 characters to write a equation of ...

Hello,

Maple needs 827 characters to write a equation of a straight line.
Is that true or what am I doing wrong?

Can anybody help me or give a direction to handle with such problems?

Putting
before it does not help either.

f:=-(6*(3*alpha^2*(alpha-1+sqrt(alpha^2-3*alpha+2))^4/(alpha-1)^4-12*alpha^2*(alpha-1+sqrt(alpha^2-3*alpha+2))^3/(alpha-1)^3-6*alpha*(alpha-1+sqrt(alpha^2-3*alpha+2))^4/(alpha-1)^4+16*alpha^2*(alpha-1+sqrt(alpha^2-3*alpha+2))^2/(alpha-1)^2+24*alpha*(alpha-1+sqrt(alpha^2-3*alpha+2))^3/(alpha-1)^3+3*(alpha-1+sqrt(alpha^2-3*alpha+2))^4/(alpha-1)^4-8*alpha^2*(alpha-1+sqrt(alpha^2-3*alpha+2))/(alpha-1)-24*alpha*(alpha-1+sqrt(alpha^2-3*alpha+2))^2/(alpha-1)^2-12*(alpha-1+sqrt(alpha^2-3*alpha+2))^3/(alpha-1)^3+8*(alpha-1+sqrt(alpha^2-3*alpha+2))^2/(alpha-1)^2+8*alpha+(8*(alpha-1+sqrt(alpha^2-3*alpha+2)))/(alpha-1)-7))/(alpha*(alpha-1+sqrt(alpha^2-3*alpha+2))^2/(alpha-1)^2-2*alpha*(alpha-1+sqrt(alpha^2-3*alpha+2))/(alpha-1)-(alpha-1+sqrt(alpha^2-3*alpha+2))^2/(alpha-1)^2+(2*(alpha-1+sqrt(alpha^2-3*alpha+2)))/(alpha-1)-1)^4;

## How to solve it with Maple?...

The equation

x^7+14*x^4+35*x^3+14*x^2+7*x+88 = 0

has the unique real root

x = (1+sqrt(2))^(1/7)+(1-sqrt(2))^(1/7)-(3+2*sqrt(2))^(1/7)-(3-2*sqrt(2))^(1/7).

Here is its verification:

Is it possible to find that in Maple? I unsuccessfully tried the solve command with the explicit option.

## How to resolve an equation with pdsolve? KDV equat...

Hi ,

I would like to resolve the Kortweg and de Devries equation :

> KDV2:= diff( u(X,T), T)+ 6*u(X,T)*diff(u(X,T),X)+ diff(u(X,T),X\$3);

I used pdsolve but I have a problem to enter the IBC :

I want

u(infinity, t) =0
u( -infinity, t )=0

u ( x, 0 ) = 1

So I did :

> SOL:=pdsolve(diff( u(X,T), T)+ 6*u(X,T)*diff(u(X,T),X)+ diff(u(X,T),X\$3)=0,{u(-10, T) = 0, u(10, T) = 0, u(X, 0) =1},numeric,time=T,range=-10..10);

But it doesn't work.

( I remplace infinity by 10 because then I want the graphic representation of the solution )

Could you help me please ?

## plot numerical solution explicite schemae...

Dear All, I need your help to plot the numerical solution. many thanks.

The variable t in [0,T], x in [0,1], b in [0,2].

Difference finie for waves equation is :

pde:=diff(u(x, y,t), t\$2) = c^2*(diff(u(x, y,t),x\$2)+diff(u(x,y,t),y\$2));

i: according to x, j according to y, and k according to t.

u[i,j,k+1]=2*u[i,j,k]-u[i,j,k-1]+(c*dt/dx)^2*(u[i-1,j,k]-2*u[i,j,k]+u[i+1,j,k])+ (c*dt/dy)^2*(u[i,j-1,k]-2*u[i,j,k]+u[i,j+1,k])

Boundary condition: u(t=0)=1, diff(u(x,y,t),t=0)=0, and the normal derivative on the boundary of Omega =0.

How can solve this problem and plot the numerical solution.

## System of equations solve, solutions may be lost. ...

Hi MaplePrime-ers!

I've been using the Maple(17) toolbox in Matlab(2012b) to quickly enumerate systems of equations by: (i) solving them symbolically, (ii) using unapply to make them functions, (iii) then supplying the points (driver equations) to get the system solution.  Speed is a must, because there may be 3 million+ systems to solve.  Symbolics is also very important because I am evaluating topology, so the structure of the equations may change, and therefore a functional approach will not work.

I have had success (seen in the first code snippet).  I would like similiar behaviour in the second code snippet, but sometimes I get 'solutions may be lost' as an error message,  or 'Error, (in unapply) variables must be unique and of type name'

The system of equations include:  Linear equations, 5th order polynomials, absolute functions, and pieceiwse functions.

Here is code with a topology that solves:

#Interconnection Equations
eq2[1] := FD_T + EM2_T = 0;
eq2[2] := ICE_T + GEN_T = 0;
eq2[3] := EM2_A + GEN_A + BAT_A = 0;
eq2[4] := -FD_W + EM2_W = 0;
eq2[5] := -ICE_W + GEN_W = 0;
eq2[6] := -EM2_V + GEN_V = 0;
eq2[7] := -EM2_V + BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#ASSUMPTIONS
assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

#FINAL EQUATIONS

sys_eqs2 := convert(eq2,set) union {eq_c[1],eq_c[2],eq_c[3],eq_c[4],eq_c[5],eq_c[6]};

#Selecting which variables to solve for:

drivers2:= { ICE_T,ICE_W,FD_T,FD_W};
symvarnames2:=select(type,indets(convert(sys_eqs2,list)),name);
notdrivers2:=symvarnames2 minus drivers2;

#Symbolic solve

sol2:=solve(sys_eqs2,notdrivers2) assuming real:
symb_sol2:=unapply(sol2,convert(drivers2,list)):

#Enumerate (there will generally be about 40, not 6)

count := 0;
for i1 from 1 to 40 do
for i2 from 1 to 40 do
for i3 from 1 to 40 do
for i4 from 1 to 40 do
count := count + 1;
solsol2(count) := symb_sol2(i1,i2,i3,i4);
od;
od;
od;
od;
count;

This works great!  I would like simliar output in my second code snippet, but this time with more inputs to symb_sol.  However, if I try and change the interconnection equations a little, and add a piecewise function, and another driver... (differences in bold)

#Interconnection Equations
eq1[1] := FD_T+EM2_T = 0;
eq1[2] := ICE_T+GBb_T = 0;
eq1[3] := GEN_T+GBa_T = 0;
eq1[4] := EM2_A+GEN_A+BAT_A = 0;
eq1[5] := -FD_W+EM2_W = 0;
eq1[6] := -GEN_W+GBa_W = 0;
eq1[7] := -ICE_W+GBb_W = 0;
eq1[8] := -EM2_V+GEN_V = 0;
eq1[9] := -EM2_V+BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#GB
FiveSpeedGearbox_R := proc(ig)
local i ,eq;
i[1]:=3.32;
i[2]:=2;
i[3]:=1.36;
i[4]:=1.01;
i[5]:=0.82;
eq:= piecewise(ig=1,i[1],ig=2, i[2],ig=3,i[3],ig=4,i[4],ig=5,i[5],1);
return eq(ig);
end proc;

eq_c[7] := GBb_T = -1/GB_R * GBa_T;
eq_c[8] := GBb_W = GB_R * GBa_W;
eq_c[9] := GB_R = FiveSpeedGearbox_R(ig);

#System Equations
sys_eqs := convert(eq1,set) union convert(eq_c,set);

#Solve for variables
symvarnames:=select(type,indets(convert(sys_eqs,list)),name);
drivers:= {ig, ICE_T,ICE_W,FD_T,FD_W};
not_drivers := symvarnames minus drivers;

#Assumptinons

assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

sol:=(solve(sys_eqs,not_drivers) assuming real);

symb_sol:=unapply(sol,convert(drivers,list)): ---> Error, (in unapply) variables must be unique and of type name

Subsequent parts don't work...

count := 0;
for i1 from 1 to 40 do
for i2 from 1 to 40 do
for i3 from 1 to 40 do
for i4 from 1 to 40 do
for i5 from 1 to 40 do
count := count + 1;
solsol2(count) := symb_sol2(i1,i2,i3,i4,5);
od;
od;
od;
od;
od;
count;

While running the last line sol:, 1 of 2 things will happen, depending on the solver. Maple17 will take a long time (30+ minutes) to solve, then report nothing, or sol will solve, but will report "some solutions have been lost".

Afterwards, evaluating symb_sol(0,0,0,0,0) will return a viable solution (real values for each of the variables).  Whereas evaluating symb_sol(0,X,0,0,0), where X <> 0, will return and empty list [].

Does anyone know how to (i) speed up the symbolic solve time?  (ii) Return ALL of the solutions?

Thanks in advance for reading this.  I've really no idea why this isn't working.  I've also attached two worksheets with the code: noGB.mw   withGB.mw