Items tagged with equations equations Tagged Items Feed

I'm trying to solve a series of equations and then graph them. I'm trying to solve for the variables involved:

values := solve({eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9,

eq10, eq11, eq12, eq13, eq14, eq15, eq16}, {a, b, b, c, d, e, f,

g, h, i, j, k, l, m, n, o, p});

 

. . . but it gives me this:

Warning, solving for expressions other than names or functions is not recommended. 

values := 

Having solution of an inequations system, is there a way/function/algorithm to find a particular numeric solution (as simplex[minimize] can do) ?

ex:

Q := {1 < x - y, x + y < 1};

R := solve(Q);

      { x < 1 - y, y < 0, y + 1 < x }

manually it's easy to find some numeric solutions:


      y = -1, x = 1
      y = -2, x = 0

but I need an automatic way.

Thank you for your help
s.py

 

I have a large system of linear algebraic equations that I want to solve (2005 Unknowns, 2005 Equations). I was wondering that what are the proper commands to use in maple for solving the system as fast as possible. Take a look at the files in the download link if you want to see the system of linear algebraic equations.

http://pc.cd/h79

Please provide me any suggesitons that you may think will be helpful like using other sofwares that are good in doing this work such as MATLAB or something else.


Thanks in Advance




Hi there. 

I'm kind of new to Maple and i'm trying to solve a Linear Algebra problem for my class of Linear Algebra of the course of Physics. Also, my first language is portuguese so forgive for my not-so-perfect english.

I have a (solved) linear system of 7 equations and 12 variables (A, B, C, D, E, F, G, H, I, J, K, L) that is the following:

  • A = 33 - K - L
  • B = 1 + F - J
  • C = -15 - F + J + K + L
  • D = 15 + H - K
  • E = 16 - F - H + J + K
  • G = 34 - H - J - L
  • I = 18 - J - K

Note: I'm using letters (A, B, ..., L) instead of X1X2, ..., X12 because it's easier to write it like this here and because I don't know if the Xn notation is allowed on Maple (i don't think so).

So, the system is possible but undetermined (with 5 degrees of freedom), being F, H, J, K and L the free variables.

Until here, everything's fine. The problem arises when the professor asks us for every solution of the system that satisfies the condition that all the variables (form A to L) are positive integers (A, B, C, D, E, F, G, H, I, J, K, L ϵ IN → natural numbers).

From my understanding, that gives rise to a system of linear inequalities with 12 variables and the following inequalities:

  • A = 33 - K - L > 0
  • B = 1 + F - J > 0
  • C = -15 - F + J + K + L > 0
  • D = 15 + H - K > 0
  • E = 16 - F - H + J + K > 0
  • G = 34 - H - J - L > 0
  • I = 18 - J - K > 0
  • > 0
  • > 0
  • > 0
  • > 0
  • > 0                            (and A,B,C,D,E,F,G,H,I,J,K,L ϵ IN)



After some research, i found that a possible way to solve this type of system of linear inequalities is trough a method of elimination (analog to Gauss-Jordan's elimination method for systems of linear equations) named Fourier-Motzkin. But it's hardwork and i wanted to do it on the computer. After some research, i came across with the following Maple command:

SolveTools[Inequality][LinearMultivariateSystem]

http://www.maplesoft.com/support/help/Maple/view.aspx?path=SolveTools%2fInequality%2fLinearMultivariateSystem

So, I tried to use that command to solve my system, with the following result (or non-result):

with(SolveTools[Inequality]);
LinearMultivariateSystem({F > 0, H > 0, J > 0, K > 0, L > 0, 1+F-J > 0, 15+H-K > 0, 18-J-K > 0, 33-K-L > 0, 34-H-J-L > 0, -15-F+J+K+L > 0, 16-F-H+J+K > 0}, [F, H, J, K, L]);

Error, (in SolveTools:-Inequality:-Piecewise) piecewise takes at least 2 parameters


So, i really need help solving this as the professor told us that the first one to solve would win a book, eheh. I don't know what I'm doing wrong. Maybe this Maple command is not made for 12 variables? Or maybe i'm just writing something on a wrong form. I've never used Maple before so i can be doing something really stupid without knowing it.

I would really apreciate an answer, as my only goal as a future physicist is to unveil the secrets of the Cosmos to us all.

Thank you again.

Miguel Jesus





I have a complicated equation which you can find in the file below. I want to multiply both sides of equaiton by cos(beta[1,j__1]*z) and integrate from 1 to L. I have many such similar equations so I decided to write a procedure to do these staffs for me.

Can you give me simple suggestions on how to write such a procedure. The procedure will take the "equation", "multiplier" and "limits of integration" as inputs and gives the "integrated equation" as the output. Integration is perfomed by the inert function "Int".

Many thanks.

Equation.mw

I have some lengthy formulas in the maple. I don't want to waste time on rewritting them in a word document.
Is there a way to import those equations in a clean and tidy form to a word document or the mathtype program or something else! :)

three equations,

f1=(256*((256*(-24610976415716501050652227*x+256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(29427736469514379027531261659072347+58899562724319710108573382000184640*y-1732944474195510410991057714955859184*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(256*(-308518681989548429992935348850261+41445095210006425938788783390458*y-1638970396838251453451269879637336*z)*(-801790542801929135637671-732048260009923946735424*x+56975701334774517040256*y-187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(5*(-89303793175477833893354121208000+6533090911353242906294143748495*y-32276910383172707359896832089932*z)*(-61468981380127448102256-5328427636421850183140*x+4647710007810227520885*y-13344414478836548348450*z))/((-46366672189358032-18896234711237580*x+3927118781169095*y+14705346416259850*z)^3)-(3*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z)*(19493858980629008651267653094056+93282964805436900100617577630195*y+42271355681070699741325611572830*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(4*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z)*(52830583937680669669892057655944+303023948138837354463602341532495*y+134962043561465977901954677856080*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-((22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z)*(95973949246309465842551069546976+723429769797021053206211106031819*y+317530466286898645427564085427048*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)-(80*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z)*(205429639975670471114284923188348+2095815907391732802212116237430935*y+883539023887333564964405237094400*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(16*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z)*(943164674716649969807523653958385+18130967224506023673179633045358720*y+7486136216172114262568716503454336*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(80*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-179928369646271075844345534739549+3401432279430696137250330740801392*y+12500875943051297916024009205116096*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(80*(-805507884940017483975376678503744+52529278437993151034132605337909*y-620040027953848498781390188900552*z)*(-716026618045942942760*x+243780804476456624597*y-8*(408351630952413337484+89777022692195474597*z)))/((-50159316775994592-36243094308305160*x+4827156544231217*y+52318895858217464*z)^3)+(768*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z)*(16858970779944867265671037333379*y-176*(1546216290476124632111328928258+3134171189636832381705249359145*z)))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(40*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3434616943638241443585000648954199*y+320*(1107265969195848092307625165761+4643932844541992753284837619195*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(12*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z)*(36451820000039413375829754767131*y-8*(66864837166560711793644210325852+35619205657210451197984743698883*z)))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(512*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z)*(12048859085295019197936041733505*y-6*(32519187452933223586671104614156+40471151781636260063426632487709*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)))/125;
f2=(128*((32768*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(98990697209366584150952278657452+920305667567495470446459093752885*x-65799721166407263195366683527104*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(1024*(-10864227594859409007678067839115+566592725765813239786863532667460*x-3214793226869529893757297514562848*z)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(40*(2938923392457131154149055759247753+8383263629566931208848464949723740*x-24821520393182477390523323699174560*z)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(80*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3017477155357435955713408172820441+3434616943638241443585000648954199*x-6875761229715351344214913955270620*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(2*(1013986939222028224203834326214704+723429769797021053206211106031819*x-1002019231842824621894736024449560*z)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(698833722744934775627393528218146+279848894416310700301852732890585*x-191427609122898840477329914007915*z)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(557016173590538671691101855964863+303023948138837354463602341532495*x-309197308873592242001670976702725*z)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(128*(-57335208466953058729715954197164+96390872682360153583488333868040*x-372364031472286149332017066304111*z)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)-(5*(-5058036108182894712997605343704+13066181822706485812588287496990*x-23584235630998237996607750176151*z)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(256*(-35027435322808897803896166913833+101153824679669203594026224000274*x-443348667941077090029000877418626*z)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(24*(-23539469566855513950637813409344+36451820000039413375829754767131*x-87577625291530403453057402554096*z)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(112*(97743545586690977941666831119873+189463292388600804291605866927808*x-534599264249120709692835475330432*z)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)-(2560*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-29205293090710790323990469408790736+212589517464418508578145671300087*x+1750806894610755007047140949242022912*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(160*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z)*(52529278437993151034132605337909*x-4*(8646336391489439377118003754263+39602745269819371968458588313429*z)))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)))/125;
f3=(128*((-24576*(3839508863935892182987929073642496+36103009879073133562313702394913733*x-87732961555209684260488911369472*y)*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(30720*(65108728870058843312625047943313*x-256*(4791937744017588738333042319232+569924119339438478856491194414721*y))*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(256*(650985307933227267490679218098413+935767027021514282821089562931792*x+12859172907478119575029190058251392*y)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(1280*(114748411888321695540849692963124+110442377985916695620550654636800*x+775672512286952418453853865599205*y)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(1600*(100744894915663705876272277122960+74302925512671884052557401907120*x+343788061485767567210745697763531*y)*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(16*(72249495731635781189477972681776+39691308285862330678445510678381*x+125252403980353077736842003056195*y)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(640*(505227745581172894057712966825000+155010006988462124695347547225138*x-39602745269819371968458588313429*y)*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(356681541401645116923690413208956+126814067043212099223976834718490*x+191427609122898840477329914007915*y)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(301993014170585471859024964195112+134962043561465977901954677856080*x+309197308873592242001670976702725*y)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(128*(4874430224431350455160317539284048+1942615285518540483044478359410032*x-372364031472286149332017066304111*y)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+((1486971442137244004077030949061728+322769103831727073598968320899320*x-117921178154991189983038750880755*y)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(512*(3005184872892536482128059816733656+1654842388128247497540371661628560*x-221674333970538545014500438709313*y)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(192*(137644881571986015841084811827840+35619205657210451197984743698883*x-10947203161441300431632175319262*y)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(64*(13728575451141247570683309821008705+13111763174706011627610159037098688*x-935548712435961241962462081828256*y)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)))/125;

thank you in advance.

Hi.

I am new in Maple and I'm trying to get functions from system of equations.

Constants are defined in line 4 and equations are:

eq1 := E2 = fE2(1+(KaE2+Ca)/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsE2*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

eq2 := T = fT(1+KaT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

eq3 := DHT = fDHT(1+KaDHT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsDHT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

KsT = 0.10e11; KaT = 4.6*0.10e6; KsE2 = 3.14*0.10e10; KaE2 = 4.21*0.10e6; KsDHT = 3*0.10e6; KaDHT = 3.5*0.10e6;

fT, fE2 and fDHT are variables, not functions (i.e. fT is not f(T) ) and I am trying to get fT=f(E2,T,DHT,Ca,Cshbg), fE2=f(E2,T,DHT,Ca,Cshbg) and fDHT=f(E2,T,DHT,Ca,Cshbg).

When I type:

eliminate({eq1, eq2, eq3}, {fE2, fT, fDHT})

Maple gives me a blank field. No error, no other comment.

I have no idea where I'm making mistakes.

Any suggestion is appreciated.

 

Thanks in advance.

Hi everyone,

 

I have a question regarding the simplification of an equation. Suppose I have and equation in maple such as (4*y^2 + 8*y + 8*sin(y))/(y^2 +1)=0. Is there a sequence of commands in Maple to simpliy this equation to (1/2)y^2 + y + sin(y)=0?

 

I know mulitplying the entire original equation by (1/8)*(y^2+1) would achieve the objective, but the equations I am generating are much longer and more complicated. The example above was chosen just to illustrate the goal.

 

Best,

 

Justin

Hello Maple-Primers!

I am trying to evaluate a system at many different points.  I would like to include an interpolation function in this system, but have thusfar been unsuccessful.

Usually, I solve a system symbolically by using eliminate and unapply:

eq[1] := A = M^3;
eq[2] := C = A*2;
eq[3] := D = N+3;
eq[4] := B = piecewise(A = 0, 0,C);
eq[5] := E = B*D;
elimsol:=eliminate(convert(eq,list),[A,B,C,D,E])[1];

unappsol:=unapply(elimsol,[N,M]);

unappsol(1,2);
{A = 8, B = 16, C = 16, D = 4, E = 64} <--- great!

Now, I want to include an interpolation function in the system of equations.  They look like this (see worksheet for actual interpolation function):

B_interp := (W,T) -> CurveFitting:-ArrayInterpolation([FC_Map_W,FC_Map_T],FC_Map,Array(1 .. 1, 1 .. 1, 1 .. 2, [[[W, T]]]),method=linear);

eq[5] := E = B_interp(N,M);

Error, (in CurveFitting:-ArrayInterpolation) invalid input: coordinates of xvalues must be of type numeric <-- bad!

Anyone have any ideas?  I've tried to use polynomials, but I can't seem to get a fit close enough for my purposes.

Maple_2D_Interpolate_FC.mw

Hello,

       How long can I expect Maple17 to take to algebraically solve a system of 14 nonlinear equations that has approximately 40% nonlinearity in its terms? I am running it on the machine right now, but have no idea what to expect. As mentioned before, I'm new to Maple...

Here is my code:

restart; eq1 := A*z-B*a*z-V*a*q-W*(b+d)*a = 0; eq2 := W*(b+d)*a-V*b*q-(F*G+B+D)*b*z = 0; eq3 := V*a*q-W*c*(b+d)-(B+C+E)*c*z = 0; eq4 := V*b*q+W*(b+d)*c-(B+C+D+F)*d*z = 0; eq5 := G*F*b*z-V*q*e-(B+H)*e*z = 0; eq6 := H*e*z-V*q*f-(B+S)*f*z = 0; eq7 := S*f*z-V*q*g-B*g*z = 0; eq8 := V*q*g+S*s*z-(B+C+E)*h*z = 0; eq9 := F*d*z+V*q*e-(B+C+H+T)*t*z = 0; eq10 := H*t*z+V*q*f-(U+B+C+2*S)*s*z = 0; eq11 := T*t*z-(B+H+Y)*u*z = 0; eq12 := U*s*z-(B+S)*v*z+H*u*z-Y*H*v*z/(H+S) = 0; eq13 := g-c-d-t-s-h = 0; eq14 := z-a-b-c-d-e-f-g-h-s-t-u-v = 0; soln := solve({eq1, eq10, eq11, eq12, eq13, eq14, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {a, b, c, d, e, f, g, h, q, s, t, u, v, z});

Thanks.

 

 

Hello,

       I am new to this forum. I have typed the follwing code in Maple17:

restart; eq1 := A-B*a-V*a*q/z-W*(b+d)*a/z = 0; eq2 := W*(b+d)*a/z-V*b*q/z-(F*G+B+D)*b = 0; eq3 := V*a*q/z-W*c(b+d)/z-(B+C+E)*c = 0; eq4 := V*b*q/z+W*(b+d)*c/z-(B+C+D+F)*d = 0; eq5 := G*F*b-V*q*e/z-(B+H)*e = 0; eq6 := H*e-V*q*f/z-(B+S)*f = 0; eq7 := S*f-V*q*g/z-B*g = 0; eq8 := V*q*g/z+S*s-(B+C+E)*h = 0; eq9 := F*d+V*q*e/z-(B+C+H+T)*t = 0; eq10 := H*t+V*q*f/z-(U+B+C+2*S)*s = 0; eq11 := T*t+W*(b+d)*x/z-(B+H+Y)*u = 0; eq12 := U*s-(B+S)*v+H*u-Y*H*v/(H+S) = 0; eq13 := g-c-d-t-s-h = 0; eq14 := z-a-b-c-d-e-f-g-h-s-t-u-v = 0; soln := solve({eq1, eq10, eq11, eq12, eq13, eq14, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {a, b, c, d, e, f, g, h, q, s, t, u, v, z});

 

This is to symbolically solve a nonlinear system of (14) equations. But when I press Enter, it just returns the message "Ready". Shouldn't it say "Evaluating"?

I don't see anything syntactically wrong with my code...

http://vk.com/doc242471809_295040421

The new method and approach to the calculation of the geometry and kinematics linkages. It is based on the Draghilev method for solving systems of nonlinear equations.

( 10-bar linkage spherical mechanism animation. Program text for professionals only.)

MECHAN123_SPHERE_10.mw

 

I'm having some trouble maybe someone can point out my error please. I'm using the Maple 18 worksheet to try some basic linear equations. The trouble is in the last step.

 

1.) I start with 2 ordered pairs (2, 14) and (14,18)

Then I put in my formula to discover the slope. I confirm it looks correct in the Variables window.

m := (y2-y1)/(x2-x1);

 

2.)  Next I input the values for my ordered pairs. I also confirm thru the Variables window.

x1 := 2;

y1 := 14;

x2 := 3;

y2 := 18;

 

3.) Now I can type m and expect to get an answer to what my slope is.

m;

4.) Now I want Slope/Intercept form of y=mx+b. When I put in the formula y-y1=m(x-x1) i get a strange result

 

When I execute this formula, the result is y-14=4. (or thru context menu I tell it to solve for y, then I get y=18)

y-y1=m(x-x1) 

When I manually input the values, the output is y-14=4x-8 (or thru context menu I tell it to solve for y, then I get y=4x+6)

y-14 = 4*(x-2)

 

 

 

Why is my equation (y-y1=m(x-x1)) not executing properly?

How can I solve raychaudhuri equations numerically using GRtensor?

1 2 3 4 5 6 7 Last Page 1 of 51