Items tagged with equations equations Tagged Items Feed

I have a complicated equation which you can find in the file below. I want to multiply both sides of equaiton by cos(beta[1,j__1]*z) and integrate from 1 to L. I have many such similar equations so I decided to write a procedure to do these staffs for me.

Can you give me simple suggestions on how to write such a procedure. The procedure will take the "equation", "multiplier" and "limits of integration" as inputs and gives the "integrated equation" as the output. Integration is perfomed by the inert function "Int".

Many thanks.

Equation.mw

I have some lengthy formulas in the maple. I don't want to waste time on rewritting them in a word document.
Is there a way to import those equations in a clean and tidy form to a word document or the mathtype program or something else! :)

three equations,

f1=(256*((256*(-24610976415716501050652227*x+256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(29427736469514379027531261659072347+58899562724319710108573382000184640*y-1732944474195510410991057714955859184*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(256*(-308518681989548429992935348850261+41445095210006425938788783390458*y-1638970396838251453451269879637336*z)*(-801790542801929135637671-732048260009923946735424*x+56975701334774517040256*y-187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(5*(-89303793175477833893354121208000+6533090911353242906294143748495*y-32276910383172707359896832089932*z)*(-61468981380127448102256-5328427636421850183140*x+4647710007810227520885*y-13344414478836548348450*z))/((-46366672189358032-18896234711237580*x+3927118781169095*y+14705346416259850*z)^3)-(3*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z)*(19493858980629008651267653094056+93282964805436900100617577630195*y+42271355681070699741325611572830*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(4*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z)*(52830583937680669669892057655944+303023948138837354463602341532495*y+134962043561465977901954677856080*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-((22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z)*(95973949246309465842551069546976+723429769797021053206211106031819*y+317530466286898645427564085427048*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)-(80*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z)*(205429639975670471114284923188348+2095815907391732802212116237430935*y+883539023887333564964405237094400*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(16*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z)*(943164674716649969807523653958385+18130967224506023673179633045358720*y+7486136216172114262568716503454336*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(80*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-179928369646271075844345534739549+3401432279430696137250330740801392*y+12500875943051297916024009205116096*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(80*(-805507884940017483975376678503744+52529278437993151034132605337909*y-620040027953848498781390188900552*z)*(-716026618045942942760*x+243780804476456624597*y-8*(408351630952413337484+89777022692195474597*z)))/((-50159316775994592-36243094308305160*x+4827156544231217*y+52318895858217464*z)^3)+(768*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z)*(16858970779944867265671037333379*y-176*(1546216290476124632111328928258+3134171189636832381705249359145*z)))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(40*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3434616943638241443585000648954199*y+320*(1107265969195848092307625165761+4643932844541992753284837619195*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(12*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z)*(36451820000039413375829754767131*y-8*(66864837166560711793644210325852+35619205657210451197984743698883*z)))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(512*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z)*(12048859085295019197936041733505*y-6*(32519187452933223586671104614156+40471151781636260063426632487709*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)))/125;
f2=(128*((32768*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(98990697209366584150952278657452+920305667567495470446459093752885*x-65799721166407263195366683527104*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(1024*(-10864227594859409007678067839115+566592725765813239786863532667460*x-3214793226869529893757297514562848*z)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(40*(2938923392457131154149055759247753+8383263629566931208848464949723740*x-24821520393182477390523323699174560*z)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(80*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3017477155357435955713408172820441+3434616943638241443585000648954199*x-6875761229715351344214913955270620*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(2*(1013986939222028224203834326214704+723429769797021053206211106031819*x-1002019231842824621894736024449560*z)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(698833722744934775627393528218146+279848894416310700301852732890585*x-191427609122898840477329914007915*z)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(557016173590538671691101855964863+303023948138837354463602341532495*x-309197308873592242001670976702725*z)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(128*(-57335208466953058729715954197164+96390872682360153583488333868040*x-372364031472286149332017066304111*z)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)-(5*(-5058036108182894712997605343704+13066181822706485812588287496990*x-23584235630998237996607750176151*z)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(256*(-35027435322808897803896166913833+101153824679669203594026224000274*x-443348667941077090029000877418626*z)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(24*(-23539469566855513950637813409344+36451820000039413375829754767131*x-87577625291530403453057402554096*z)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(112*(97743545586690977941666831119873+189463292388600804291605866927808*x-534599264249120709692835475330432*z)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)-(2560*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-29205293090710790323990469408790736+212589517464418508578145671300087*x+1750806894610755007047140949242022912*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(160*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z)*(52529278437993151034132605337909*x-4*(8646336391489439377118003754263+39602745269819371968458588313429*z)))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)))/125;
f3=(128*((-24576*(3839508863935892182987929073642496+36103009879073133562313702394913733*x-87732961555209684260488911369472*y)*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(30720*(65108728870058843312625047943313*x-256*(4791937744017588738333042319232+569924119339438478856491194414721*y))*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(256*(650985307933227267490679218098413+935767027021514282821089562931792*x+12859172907478119575029190058251392*y)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(1280*(114748411888321695540849692963124+110442377985916695620550654636800*x+775672512286952418453853865599205*y)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(1600*(100744894915663705876272277122960+74302925512671884052557401907120*x+343788061485767567210745697763531*y)*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(16*(72249495731635781189477972681776+39691308285862330678445510678381*x+125252403980353077736842003056195*y)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(640*(505227745581172894057712966825000+155010006988462124695347547225138*x-39602745269819371968458588313429*y)*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(356681541401645116923690413208956+126814067043212099223976834718490*x+191427609122898840477329914007915*y)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(301993014170585471859024964195112+134962043561465977901954677856080*x+309197308873592242001670976702725*y)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(128*(4874430224431350455160317539284048+1942615285518540483044478359410032*x-372364031472286149332017066304111*y)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+((1486971442137244004077030949061728+322769103831727073598968320899320*x-117921178154991189983038750880755*y)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(512*(3005184872892536482128059816733656+1654842388128247497540371661628560*x-221674333970538545014500438709313*y)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(192*(137644881571986015841084811827840+35619205657210451197984743698883*x-10947203161441300431632175319262*y)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(64*(13728575451141247570683309821008705+13111763174706011627610159037098688*x-935548712435961241962462081828256*y)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)))/125;

thank you in advance.

Hi.

I am new in Maple and I'm trying to get functions from system of equations.

Constants are defined in line 4 and equations are:

eq1 := E2 = fE2(1+(KaE2+Ca)/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsE2*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

eq2 := T = fT(1+KaT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

eq3 := DHT = fDHT(1+KaDHT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsDHT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

KsT = 0.10e11; KaT = 4.6*0.10e6; KsE2 = 3.14*0.10e10; KaE2 = 4.21*0.10e6; KsDHT = 3*0.10e6; KaDHT = 3.5*0.10e6;

fT, fE2 and fDHT are variables, not functions (i.e. fT is not f(T) ) and I am trying to get fT=f(E2,T,DHT,Ca,Cshbg), fE2=f(E2,T,DHT,Ca,Cshbg) and fDHT=f(E2,T,DHT,Ca,Cshbg).

When I type:

eliminate({eq1, eq2, eq3}, {fE2, fT, fDHT})

Maple gives me a blank field. No error, no other comment.

I have no idea where I'm making mistakes.

Any suggestion is appreciated.

 

Thanks in advance.

Hi everyone,

 

I have a question regarding the simplification of an equation. Suppose I have and equation in maple such as (4*y^2 + 8*y + 8*sin(y))/(y^2 +1)=0. Is there a sequence of commands in Maple to simpliy this equation to (1/2)y^2 + y + sin(y)=0?

 

I know mulitplying the entire original equation by (1/8)*(y^2+1) would achieve the objective, but the equations I am generating are much longer and more complicated. The example above was chosen just to illustrate the goal.

 

Best,

 

Justin

Hello Maple-Primers!

I am trying to evaluate a system at many different points.  I would like to include an interpolation function in this system, but have thusfar been unsuccessful.

Usually, I solve a system symbolically by using eliminate and unapply:

eq[1] := A = M^3;
eq[2] := C = A*2;
eq[3] := D = N+3;
eq[4] := B = piecewise(A = 0, 0,C);
eq[5] := E = B*D;
elimsol:=eliminate(convert(eq,list),[A,B,C,D,E])[1];

unappsol:=unapply(elimsol,[N,M]);

unappsol(1,2);
{A = 8, B = 16, C = 16, D = 4, E = 64} <--- great!

Now, I want to include an interpolation function in the system of equations.  They look like this (see worksheet for actual interpolation function):

B_interp := (W,T) -> CurveFitting:-ArrayInterpolation([FC_Map_W,FC_Map_T],FC_Map,Array(1 .. 1, 1 .. 1, 1 .. 2, [[[W, T]]]),method=linear);

eq[5] := E = B_interp(N,M);

Error, (in CurveFitting:-ArrayInterpolation) invalid input: coordinates of xvalues must be of type numeric <-- bad!

Anyone have any ideas?  I've tried to use polynomials, but I can't seem to get a fit close enough for my purposes.

Maple_2D_Interpolate_FC.mw

Hello,

       How long can I expect Maple17 to take to algebraically solve a system of 14 nonlinear equations that has approximately 40% nonlinearity in its terms? I am running it on the machine right now, but have no idea what to expect. As mentioned before, I'm new to Maple...

Here is my code:

restart; eq1 := A*z-B*a*z-V*a*q-W*(b+d)*a = 0; eq2 := W*(b+d)*a-V*b*q-(F*G+B+D)*b*z = 0; eq3 := V*a*q-W*c*(b+d)-(B+C+E)*c*z = 0; eq4 := V*b*q+W*(b+d)*c-(B+C+D+F)*d*z = 0; eq5 := G*F*b*z-V*q*e-(B+H)*e*z = 0; eq6 := H*e*z-V*q*f-(B+S)*f*z = 0; eq7 := S*f*z-V*q*g-B*g*z = 0; eq8 := V*q*g+S*s*z-(B+C+E)*h*z = 0; eq9 := F*d*z+V*q*e-(B+C+H+T)*t*z = 0; eq10 := H*t*z+V*q*f-(U+B+C+2*S)*s*z = 0; eq11 := T*t*z-(B+H+Y)*u*z = 0; eq12 := U*s*z-(B+S)*v*z+H*u*z-Y*H*v*z/(H+S) = 0; eq13 := g-c-d-t-s-h = 0; eq14 := z-a-b-c-d-e-f-g-h-s-t-u-v = 0; soln := solve({eq1, eq10, eq11, eq12, eq13, eq14, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {a, b, c, d, e, f, g, h, q, s, t, u, v, z});

Thanks.

 

 

Hello,

       I am new to this forum. I have typed the follwing code in Maple17:

restart; eq1 := A-B*a-V*a*q/z-W*(b+d)*a/z = 0; eq2 := W*(b+d)*a/z-V*b*q/z-(F*G+B+D)*b = 0; eq3 := V*a*q/z-W*c(b+d)/z-(B+C+E)*c = 0; eq4 := V*b*q/z+W*(b+d)*c/z-(B+C+D+F)*d = 0; eq5 := G*F*b-V*q*e/z-(B+H)*e = 0; eq6 := H*e-V*q*f/z-(B+S)*f = 0; eq7 := S*f-V*q*g/z-B*g = 0; eq8 := V*q*g/z+S*s-(B+C+E)*h = 0; eq9 := F*d+V*q*e/z-(B+C+H+T)*t = 0; eq10 := H*t+V*q*f/z-(U+B+C+2*S)*s = 0; eq11 := T*t+W*(b+d)*x/z-(B+H+Y)*u = 0; eq12 := U*s-(B+S)*v+H*u-Y*H*v/(H+S) = 0; eq13 := g-c-d-t-s-h = 0; eq14 := z-a-b-c-d-e-f-g-h-s-t-u-v = 0; soln := solve({eq1, eq10, eq11, eq12, eq13, eq14, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {a, b, c, d, e, f, g, h, q, s, t, u, v, z});

 

This is to symbolically solve a nonlinear system of (14) equations. But when I press Enter, it just returns the message "Ready". Shouldn't it say "Evaluating"?

I don't see anything syntactically wrong with my code...

http://vk.com/doc242471809_295040421

The new method and approach to the calculation of the geometry and kinematics linkages. It is based on the Draghilev method for solving systems of nonlinear equations.

( 10-bar linkage spherical mechanism animation. Program text for professionals only.)

MECHAN123_SPHERE_10.mw

 

I'm having some trouble maybe someone can point out my error please. I'm using the Maple 18 worksheet to try some basic linear equations. The trouble is in the last step.

 

1.) I start with 2 ordered pairs (2, 14) and (14,18)

Then I put in my formula to discover the slope. I confirm it looks correct in the Variables window.

m := (y2-y1)/(x2-x1);

 

2.)  Next I input the values for my ordered pairs. I also confirm thru the Variables window.

x1 := 2;

y1 := 14;

x2 := 3;

y2 := 18;

 

3.) Now I can type m and expect to get an answer to what my slope is.

m;

4.) Now I want Slope/Intercept form of y=mx+b. When I put in the formula y-y1=m(x-x1) i get a strange result

 

When I execute this formula, the result is y-14=4. (or thru context menu I tell it to solve for y, then I get y=18)

y-y1=m(x-x1) 

When I manually input the values, the output is y-14=4x-8 (or thru context menu I tell it to solve for y, then I get y=4x+6)

y-14 = 4*(x-2)

 

 

 

Why is my equation (y-y1=m(x-x1)) not executing properly?

How can I solve raychaudhuri equations numerically using GRtensor?

Hi,

how can I solve a set of first order, coupled, non-linear and inhomogeneous differential equations using MAPLE 12.

Hi every body:

how can i solve this equations(without numerical method):

eq1 := (D[1, 1](eta11))(t, a*t, a^2*t)+1.326096634*10^8*Pi^2*eta11(t, a*t, a^2*t)-3.315241586*10^7*Pi*eta21(t, a*t, a^2*t) = 0

eq2 := 2.054901810*10^13*eta21(t, a*t, a^2*t)+(D[1, 1](eta21))(t, a*t, a^2*t)-8.219607239*10^13*Pi*eta11(t, a*t, a^2*t)+4.137421500*10^8*Pi^2*eta21(t, a*t, a^2*t) = 0

eq3 := (D[1, 1](eta31))(t, a*t, a^2*t)+4.137421500*10^8*Pi^2*eta31(t, a*t, a^2*t) = 0

Hi,

I have this set of equations but maple won't solve the three variables and it gives an 

Error, (in solve) cannot solve for an unknown function with other operations in its arguments. This are the equations with unknowns, alfa1, alfa2, and alfa3.

eq1 := 3*(1+sin(alfa1)^3)(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = 3*(1+sin(alfa2)^3)(30/tan(alfa2)+60/tan(alfa3))/(sin(alfa2)^2*cos(alfa2)*tan(alfa2));

eq2 := 3*(1+sin(alfa1)^3)(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = (90*(1+sin(alfa3)^3))/(sin(alfa3)^2*cos(alfa3)*tan(alfa3));

eq3 := 3/tan(alfa1)+3/tan(alfa2)+3/tan(alfa3) = 25/2;

solutions := [solve({eq1, eq2, eq3, alfa1 > 0, alfa2 > 0, alfa3 > 0}, {alfa1, alfa2, alfa3})];

Can anyone help?

 

im solving 6 ODE which is the equations are unsteady with boundary conditions.. the program can be run when A=0 but when A=0.2 or others value .. its cannot be run... A means for unsteadiness... before this i solve for steady equations.. this is first time i solve for unsteady using maple.. anyone know where i am wrong??? thanks for helping :)

 

restart; with(plots); n := 2; Ec := 2.0; Pr := .72; N := .2; M := .1; l := 1; Nr := 1; y := 1; blt := 2.5; B := .1; a1 := 1; rho := .5

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+l*B*H(eta)*(F(eta)-(diff(f(eta), eta)))-M*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(f(eta), eta, eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2+.1*H(eta)*(F(eta)-(diff(f(eta), eta)))-.1*(diff(f(eta), eta))-A*(diff(f(eta), eta)+.5*eta*(diff(diff(f(eta), eta), eta))) = 0

(1)

Eq2 := A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;

A*(F(eta)+.5*eta*(diff(F(eta), eta)))+G(eta)*(diff(F(eta), eta))+F(eta)^2+.1*F(eta)-.1*(diff(f(eta), eta)) = 0

(2)

Eq3 := .5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

.5*A*(G(eta)+.5*eta*(diff(G(eta), eta)))+G(eta)*(diff(G(eta), eta))+.1*f(eta)+.1*G(eta) = 0

(3)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(4)

Eq5 := (1+Nr)*(diff(theta(eta), eta, eta))+Pr*((diff(theta(eta), eta))*f(eta)-2*(diff(f(eta), eta))*theta(eta))+N*Pr*a1*(theta1(eta)-theta(eta))/rho+N*Pr*Ec*B*(F(eta)-(diff(f(eta), eta)))^2/rho+Pr*Ec*(diff(f(eta), eta))^2-.5*A*Pr*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0;

2*(diff(diff(theta(eta), eta), eta))+.72*(diff(theta(eta), eta))*f(eta)-1.44*(diff(f(eta), eta))*theta(eta)+.2880000000*theta1(eta)-.2880000000*theta(eta)+0.5760000000e-1*(F(eta)-(diff(f(eta), eta)))^2+1.440*(diff(f(eta), eta))^2-.360*A*(4*theta(eta)+eta*(diff(theta(eta), eta))) = 0

(5)

Eq6 := 2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+a1*y*(theta1(eta)-theta(eta))+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0;

2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+theta1(eta)-theta(eta)+.5*A*(4*theta1(eta)+eta*(diff(theta1(eta), eta))) = 0

(6)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, F(blt) = 0, G(blt) = -f(blt), H(blt) = n, theta(0) = 1, theta(blt) = 0, theta1(blt) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(2.5) = 0, F(2.5) = 0, G(2.5) = -f(2.5), H(2.5) = 2, theta(0) = 1, theta(2.5) = 0, theta1(2.5) = 0

(7)

L := [0., .2, .5];

[0., .2, .5]

(8)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, A = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta1(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YP || k := rhs(R[5]); YR || k := rhs(R[6]); YQ || k := rhs(R[7]); YA || k := rhs(R[9]); YB || k := rhs(R[8]) end do

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

P1 := plot([Y || (1 .. 3)], 0 .. 10, labels = [eta, (D(f))(eta)])

P2 := plot([YP || (1 .. 3)], 0 .. 10, labels = [eta, F(eta)])

plots:-display([P1, P2])

Error, (in plots:-display) expecting plot structures but received: [P1, P2]

 

``

 

Download unsteadyManjunatha.mw

1 2 3 4 5 6 7 Last Page 2 of 52