## Plotting a big expression, results in an empty gra...

Hi all

I'm having a hard time, making Maple plot a pretty huge expression in my project.

I have solved a differential equation with initial conditions with method=laplace. The differential equation contains a fourier serie equation, so the more accurate i want the equation to be, the larger the differential equation will be.

Maple solves the equation just fine, and i can plot the solution with 2-4 fourier parts, but when i go higher as i need, the graph ends up empty?

with 20 parts i get the following equation:

0.*sin(52.88*t)+0.*cos(74.03*t)-0.*sin(74.03*t)-0.*cos(52.88*t)+0.*cos(200.95*t)-0.*sin(200.95*t)+0.*cos(158.65*t)-5.55*10^(-8)*sin(105.76*t)-0.*sin(116.34*t)+0.*cos(31.73*t)-.45*sin(10.58*t)+1.02*cos(10.58*t)+0.*sin(95.19*t)+0.*cos(116.34*t)+0.*sin(179.80*t)-0.*cos(179.80*t)+0.*sin(137.49*t)-0.*sin(31.73*t)-0.*cos(95.19*t)+5.53*10^(-993)*(-1.13*10^992*cos(10.61*t)+8.14*10^991*sin(10.61*t))*exp(-0.7e-1*t)+4.23*10^(-7)*cos(211.53*t)-6.69*10^(-7)*cos(63.46*t)-6.11*10^(-7)*cos(105.76*t)+5.79*10^(-7)*cos(126.92*t)+6.67*10^(-8)*sin(42.31*t)-5.88*10^(-8)*sin(148.07*t)+5.88*10^(-8)*sin(211.53*t)+7.09*10^(-7)*cos(42.31*t)+5.45*10^(-8)*sin(84.61*t)+6.40*10^(-7)*cos(84.61*t)+5.72*10^(-8)*sin(126.92*t)-9.01*10^(-7)*cos(21.15*t)+5.97*10^(-8)*sin(169.22*t)+5.06*10^(-7)*cos(169.22*t)-5.98*10^(-8)*sin(190.38*t)-4.65*10^(-7)*cos(190.38*t)-5.44*10^(-7)*cos(148.07*t)-1.33*10^(-7)*sin(21.15*t)-5.61*10^(-8)*sin(63.46*t)-0.*cos(137.49*t)-0.*sin(158.65*t)

if i plot that expression, the graph ends up empty?

I did also try to solve the equation numerical to plot it with odeplot, but when i try to solve it without the laplace method i get this error message:
"Error, (in dsolve) found the following equations not depending on the unknows of the input system:"

The differential equation is:

ode:=diff(Theta(t), t, t)+2*Zeta*omega[balanceue]*(diff(Theta(t), t))+omega[balanceue]^2*Theta(t) = M[p]/m[balanceue]

and the initial conditions:

ICS := Theta(0) = (1/8)*Pi, (D(Theta))(0) = 0;

when i do:

dsolve({ICS, ode}, Theta(t), method = laplace) it solves just fine.

but when i try with:

dsolve({ICS, ode}, Theta(t))

or

dsolve({ICS, ode}, Theta(t),numeric)

I get the message:

Error, (in dsolve) found the following equations not depending on the unknowns of the input system: {Theta(0) = (1/8)*Pi, (D(Theta))(0) = 0}

It doesnt seem logical at all, is it a bug? Or can anybody help me with this problem?

Regards

Nicolai

## Systems of nonlinear equations...

I have a nonlinear system with 4 equations and 4 unknowns. I am using fsolve. I know that there are multiple solutions for each variable but am only getting one. I need the others. what do I do??

This is my code:

R__1 := Matrix([[1, 0] , [0, 1] ]);

R__2 := Matrix([[1/2, sqrt(3)/2] , [-sqrt(3)/2, 1/2] ]);

R__3 := Matrix([[-1/2, sqrt(3)/2] , [-sqrt(3)/2, -1/2] ]);

R__4 := Matrix([[-1, 0] , [0, -1] ]);

R__5 := Matrix([[-1/2, -sqrt(3)/2] , [sqrt(3)/2, -1/2] ]);

d__1 := Vector( [ 0, 5.4] );

d__2 := Vector( [ 6.4, 4.539] );

d__3 := Vector( [ 11, 4.078] );

d__4 := Vector( [ 15.5, 2.079] );

d__5 := Vector( [ 19, 1.039] );

a := Vector( [ a__x, a__y] );

A__1:=R__1.a+d__1;

A__2:=R__2.a+d__2;

A__3:=R__3.a+d__3;

A__4:=R__4.a+d__4;

A__5:=R__5.a+d__5;

OO:=Vector([O__x,O__y]);

DA1:=A__2.A__2-A__1.A__1-2*(A__2-A__1).OO;

DA2:=A__3.A__3-A__1.A__1-2*(A__3-A__1).OO;

DA3:=A__4.A__4-A__1.A__1-2*(A__4-A__1).OO;

DA4:=A__5.A__5-A__1.A__1-2*(A__5-A__1).OO;

fsolve({DA1,DA2,DA3,DA4},{a__x,a__y,O__x,O__y});

Thanks for any tips you may be able to offer

## How do I plot the following equation? f: R -> R^2 ...

How do I plot the following equations in Maple ?:

I already tried this:

According to the given solution the plot should look like that:

I think I have to tell maple that the function is defined from R^2 -> R, but I don't know how to do this.

Thanks in advance for your kind help.

## View steps differential equations...

Hey, how is can i see all the steps in maple? I would specially like to know it for differential equations.

For example we could use this one:

dl := 3*(diff(y(t), t, t))+6*(diff(y(t), t))+4*y(t) = 0

## maximum number of equations for MapleSim...

Dear Community,

Does anybody know, if there is a limit for the maximum number of equations for MapleSim? I tried with a system of 4456 equations, and I got the error message "(in DSN/RunSimulation ) system is inconsistent" When I took away most of the components (subsystems) it worked. So I suppose there must be some limit for the number of equations.

Andras

## Solving for values...

I'm trying to solve a series of equations and then graph them. I'm trying to solve for the variables involved:

values := solve({eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9,

eq10, eq11, eq12, eq13, eq14, eq15, eq16}, {a, b, b, c, d, e, f,

g, h, i, j, k, l, m, n, o, p});

. . . but it gives me this:

Warning, solving for expressions other than names or functions is not recommended.

values :=

## inequations: how to find a partical numeric soluti...

Having solution of an inequations system, is there a way/function/algorithm to find a particular numeric solution (as simplex[minimize] can do) ?

ex:

Q := {1 < x - y, x + y < 1};

R := solve(Q);

{ x < 1 - y, y < 0, y + 1 < x }

manually it's easy to find some numeric solutions:

y = -1, x = 1
y = -2, x = 0

but I need an automatic way.

Thank you for your help
s.py

## Solving Large Linear System of Algebraic Equations...

I have a large system of linear algebraic equations that I want to solve (2005 Unknowns, 2005 Equations). I was wondering that what are the proper commands to use in maple for solving the system as fast as possible. Take a look at the files in the download link if you want to see the system of linear algebraic equations.

http://pc.cd/h79

Please provide me any suggesitons that you may think will be helpful like using other sofwares that are good in doing this work such as MATLAB or something else.

## System of multivariable linear inequalities (12 va...

Hi there.

I'm kind of new to Maple and i'm trying to solve a Linear Algebra problem for my class of Linear Algebra of the course of Physics. Also, my first language is portuguese so forgive for my not-so-perfect english.

I have a (solved) linear system of 7 equations and 12 variables (A, B, C, D, E, F, G, H, I, J, K, L) that is the following:

• A = 33 - K - L
• B = 1 + F - J
• C = -15 - F + J + K + L
• D = 15 + H - K
• E = 16 - F - H + J + K
• G = 34 - H - J - L
• I = 18 - J - K

Note: I'm using letters (A, B, ..., L) instead of X1X2, ..., X12 because it's easier to write it like this here and because I don't know if the Xn notation is allowed on Maple (i don't think so).

So, the system is possible but undetermined (with 5 degrees of freedom), being F, H, J, K and L the free variables.

Until here, everything's fine. The problem arises when the professor asks us for every solution of the system that satisfies the condition that all the variables (form A to L) are positive integers (A, B, C, D, E, F, G, H, I, J, K, L ϵ IN → natural numbers).

From my understanding, that gives rise to a system of linear inequalities with 12 variables and the following inequalities:

• A = 33 - K - L > 0
• B = 1 + F - J > 0
• C = -15 - F + J + K + L > 0
• D = 15 + H - K > 0
• E = 16 - F - H + J + K > 0
• G = 34 - H - J - L > 0
• I = 18 - J - K > 0
• > 0
• > 0
• > 0
• > 0
• > 0                            (and A,B,C,D,E,F,G,H,I,J,K,L ϵ IN)

After some research, i found that a possible way to solve this type of system of linear inequalities is trough a method of elimination (analog to Gauss-Jordan's elimination method for systems of linear equations) named Fourier-Motzkin. But it's hardwork and i wanted to do it on the computer. After some research, i came across with the following Maple command:

SolveTools[Inequality][LinearMultivariateSystem]

http://www.maplesoft.com/support/help/Maple/view.aspx?path=SolveTools%2fInequality%2fLinearMultivariateSystem

So, I tried to use that command to solve my system, with the following result (or non-result):

with(SolveTools[Inequality]);
LinearMultivariateSystem({F > 0, H > 0, J > 0, K > 0, L > 0, 1+F-J > 0, 15+H-K > 0, 18-J-K > 0, 33-K-L > 0, 34-H-J-L > 0, -15-F+J+K+L > 0, 16-F-H+J+K > 0}, [F, H, J, K, L]);

Error, (in SolveTools:-Inequality:-Piecewise) piecewise takes at least 2 parameters

So, i really need help solving this as the professor told us that the first one to solve would win a book, eheh. I don't know what I'm doing wrong. Maybe this Maple command is not made for 12 variables? Or maybe i'm just writing something on a wrong form. I've never used Maple before so i can be doing something really stupid without knowing it.

I would really apreciate an answer, as my only goal as a future physicist is to unveil the secrets of the Cosmos to us all.

Thank you again.

Miguel Jesus

## How to integrate both sides of a equation?...

I have a complicated equation which you can find in the file below. I want to multiply both sides of equaiton by cos(beta[1,j__1]*z) and integrate from 1 to L. I have many such similar equations so I decided to write a procedure to do these staffs for me.

Can you give me simple suggestions on how to write such a procedure. The procedure will take the "equation", "multiplier" and "limits of integration" as inputs and gives the "integrated equation" as the output. Integration is perfomed by the inert function "Int".

Many thanks.

Equation.mw

## Is there a way to import an equation from maple to...

I have some lengthy formulas in the maple. I don't want to waste time on rewritting them in a word document.
Is there a way to import those equations in a clean and tidy form to a word document or the mathtype program or something else! :)

## nonlinear equations can't be solved by fsolve...

three equations,

f1=(256*((256*(-24610976415716501050652227*x+256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(29427736469514379027531261659072347+58899562724319710108573382000184640*y-1732944474195510410991057714955859184*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(256*(-308518681989548429992935348850261+41445095210006425938788783390458*y-1638970396838251453451269879637336*z)*(-801790542801929135637671-732048260009923946735424*x+56975701334774517040256*y-187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(5*(-89303793175477833893354121208000+6533090911353242906294143748495*y-32276910383172707359896832089932*z)*(-61468981380127448102256-5328427636421850183140*x+4647710007810227520885*y-13344414478836548348450*z))/((-46366672189358032-18896234711237580*x+3927118781169095*y+14705346416259850*z)^3)-(3*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z)*(19493858980629008651267653094056+93282964805436900100617577630195*y+42271355681070699741325611572830*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(4*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z)*(52830583937680669669892057655944+303023948138837354463602341532495*y+134962043561465977901954677856080*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-((22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z)*(95973949246309465842551069546976+723429769797021053206211106031819*y+317530466286898645427564085427048*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)-(80*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z)*(205429639975670471114284923188348+2095815907391732802212116237430935*y+883539023887333564964405237094400*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(16*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z)*(943164674716649969807523653958385+18130967224506023673179633045358720*y+7486136216172114262568716503454336*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(80*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-179928369646271075844345534739549+3401432279430696137250330740801392*y+12500875943051297916024009205116096*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(80*(-805507884940017483975376678503744+52529278437993151034132605337909*y-620040027953848498781390188900552*z)*(-716026618045942942760*x+243780804476456624597*y-8*(408351630952413337484+89777022692195474597*z)))/((-50159316775994592-36243094308305160*x+4827156544231217*y+52318895858217464*z)^3)+(768*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z)*(16858970779944867265671037333379*y-176*(1546216290476124632111328928258+3134171189636832381705249359145*z)))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(40*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3434616943638241443585000648954199*y+320*(1107265969195848092307625165761+4643932844541992753284837619195*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(12*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z)*(36451820000039413375829754767131*y-8*(66864837166560711793644210325852+35619205657210451197984743698883*z)))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(512*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z)*(12048859085295019197936041733505*y-6*(32519187452933223586671104614156+40471151781636260063426632487709*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)))/125;
f2=(128*((32768*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(98990697209366584150952278657452+920305667567495470446459093752885*x-65799721166407263195366683527104*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(1024*(-10864227594859409007678067839115+566592725765813239786863532667460*x-3214793226869529893757297514562848*z)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(40*(2938923392457131154149055759247753+8383263629566931208848464949723740*x-24821520393182477390523323699174560*z)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(80*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3017477155357435955713408172820441+3434616943638241443585000648954199*x-6875761229715351344214913955270620*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(2*(1013986939222028224203834326214704+723429769797021053206211106031819*x-1002019231842824621894736024449560*z)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(698833722744934775627393528218146+279848894416310700301852732890585*x-191427609122898840477329914007915*z)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(557016173590538671691101855964863+303023948138837354463602341532495*x-309197308873592242001670976702725*z)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(128*(-57335208466953058729715954197164+96390872682360153583488333868040*x-372364031472286149332017066304111*z)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)-(5*(-5058036108182894712997605343704+13066181822706485812588287496990*x-23584235630998237996607750176151*z)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(256*(-35027435322808897803896166913833+101153824679669203594026224000274*x-443348667941077090029000877418626*z)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(24*(-23539469566855513950637813409344+36451820000039413375829754767131*x-87577625291530403453057402554096*z)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(112*(97743545586690977941666831119873+189463292388600804291605866927808*x-534599264249120709692835475330432*z)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)-(2560*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-29205293090710790323990469408790736+212589517464418508578145671300087*x+1750806894610755007047140949242022912*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(160*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z)*(52529278437993151034132605337909*x-4*(8646336391489439377118003754263+39602745269819371968458588313429*z)))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)))/125;
f3=(128*((-24576*(3839508863935892182987929073642496+36103009879073133562313702394913733*x-87732961555209684260488911369472*y)*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(30720*(65108728870058843312625047943313*x-256*(4791937744017588738333042319232+569924119339438478856491194414721*y))*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(256*(650985307933227267490679218098413+935767027021514282821089562931792*x+12859172907478119575029190058251392*y)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(1280*(114748411888321695540849692963124+110442377985916695620550654636800*x+775672512286952418453853865599205*y)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(1600*(100744894915663705876272277122960+74302925512671884052557401907120*x+343788061485767567210745697763531*y)*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(16*(72249495731635781189477972681776+39691308285862330678445510678381*x+125252403980353077736842003056195*y)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(640*(505227745581172894057712966825000+155010006988462124695347547225138*x-39602745269819371968458588313429*y)*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(356681541401645116923690413208956+126814067043212099223976834718490*x+191427609122898840477329914007915*y)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(301993014170585471859024964195112+134962043561465977901954677856080*x+309197308873592242001670976702725*y)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(128*(4874430224431350455160317539284048+1942615285518540483044478359410032*x-372364031472286149332017066304111*y)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+((1486971442137244004077030949061728+322769103831727073598968320899320*x-117921178154991189983038750880755*y)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(512*(3005184872892536482128059816733656+1654842388128247497540371661628560*x-221674333970538545014500438709313*y)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(192*(137644881571986015841084811827840+35619205657210451197984743698883*x-10947203161441300431632175319262*y)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(64*(13728575451141247570683309821008705+13111763174706011627610159037098688*x-935548712435961241962462081828256*y)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)))/125;

thank you in advance.

## System of equations with the implicit variables...

Hi.

I am new in Maple and I'm trying to get functions from system of equations.

Constants are defined in line 4 and equations are:

eq1 := E2 = fE2(1+(KaE2+Ca)/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsE2*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

eq2 := T = fT(1+KaT*Ca/(1+KaE2*fE2+KaT*fT+KaDHT*fDHT)+KsT*Cshbg/(1+KsE2*fE2+KsT*fT+KsDHT*fDHT))

KsT = 0.10e11; KaT = 4.6*0.10e6; KsE2 = 3.14*0.10e10; KaE2 = 4.21*0.10e6; KsDHT = 3*0.10e6; KaDHT = 3.5*0.10e6;

fT, fE2 and fDHT are variables, not functions (i.e. fT is not f(T) ) and I am trying to get fT=f(E2,T,DHT,Ca,Cshbg), fE2=f(E2,T,DHT,Ca,Cshbg) and fDHT=f(E2,T,DHT,Ca,Cshbg).

When I type:

eliminate({eq1, eq2, eq3}, {fE2, fT, fDHT})

Maple gives me a blank field. No error, no other comment.

I have no idea where I'm making mistakes.

Any suggestion is appreciated.

## How to obtain a symbolic set of solutions containi...

Hello Maple-Primers!

I am trying to evaluate a system at many different points.  I would like to include an interpolation function in this system, but have thusfar been unsuccessful.

Usually, I solve a system symbolically by using eliminate and unapply:

eq[1] := A = M^3;
eq[2] := C = A*2;
eq[3] := D = N+3;
eq[4] := B = piecewise(A = 0, 0,C);
eq[5] := E = B*D;
elimsol:=eliminate(convert(eq,list),[A,B,C,D,E])[1];

unappsol:=unapply(elimsol,[N,M]);

unappsol(1,2);
{A = 8, B = 16, C = 16, D = 4, E = 64} <--- great!

Now, I want to include an interpolation function in the system of equations.  They look like this (see worksheet for actual interpolation function):

B_interp := (W,T) -> CurveFitting:-ArrayInterpolation([FC_Map_W,FC_Map_T],FC_Map,Array(1 .. 1, 1 .. 1, 1 .. 2, [[[W, T]]]),method=linear);

eq[5] := E = B_interp(N,M);

Error, (in CurveFitting:-ArrayInterpolation) invalid input: coordinates of xvalues must be of type numeric <-- bad!

Anyone have any ideas?  I've tried to use polynomials, but I can't seem to get a fit close enough for my purposes.

Maple_2D_Interpolate_FC.mw

## Solving a nonlinear system of equations in Maple...

Hello,

I am new to this forum. I have typed the follwing code in Maple17:

restart; eq1 := A-B*a-V*a*q/z-W*(b+d)*a/z = 0; eq2 := W*(b+d)*a/z-V*b*q/z-(F*G+B+D)*b = 0; eq3 := V*a*q/z-W*c(b+d)/z-(B+C+E)*c = 0; eq4 := V*b*q/z+W*(b+d)*c/z-(B+C+D+F)*d = 0; eq5 := G*F*b-V*q*e/z-(B+H)*e = 0; eq6 := H*e-V*q*f/z-(B+S)*f = 0; eq7 := S*f-V*q*g/z-B*g = 0; eq8 := V*q*g/z+S*s-(B+C+E)*h = 0; eq9 := F*d+V*q*e/z-(B+C+H+T)*t = 0; eq10 := H*t+V*q*f/z-(U+B+C+2*S)*s = 0; eq11 := T*t+W*(b+d)*x/z-(B+H+Y)*u = 0; eq12 := U*s-(B+S)*v+H*u-Y*H*v/(H+S) = 0; eq13 := g-c-d-t-s-h = 0; eq14 := z-a-b-c-d-e-f-g-h-s-t-u-v = 0; soln := solve({eq1, eq10, eq11, eq12, eq13, eq14, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {a, b, c, d, e, f, g, h, q, s, t, u, v, z});

This is to symbolically solve a nonlinear system of (14) equations. But when I press Enter, it just returns the message "Ready". Shouldn't it say "Evaluating"?

I don't see anything syntactically wrong with my code...

 5 6 7 8 9 10 11 Last Page 7 of 54
﻿