Items tagged with error error Tagged Items Feed

Please consider this code:

restart;

with(DEtools):

test:=(diff(x(t),t,t))+(diff(a(t),t,t))=0;

FirstOrderSys := convertsys(test, [], x(t), t, y, yp );

When it is executed Maple says: Error, (in is/internal) too many levels of recursion

Now if i change just the letter a to, say, p (a(t)->p(t)) like this:

restart;

with(DEtools):

test:=(diff(x(t),t,t))+(diff(p(t),t,t))=0;

FirstOrderSys := convertsys(test, [], x(t), t, y, yp );

Lo and Behold! Suddenly Maple gives the answer:

/ d / d \\ / d / d \\ |--- |--- x(t)|| + |--- |--- p(t)|| = 0 \ dt \ dt // \ dt \ dt // [[ d / d \] [[yp[1] = y[2], yp[2] = ---- |--- p(t)|], [[ dt \ dt /] [ d ] ] [y[1] = x(t), y[2] = --- x(t)], undefined, []] [ dt ] ]

Why is that so? I don't see how one letter makes this difference. I have learned Maple on my own, so maybe I have missed something?

How to avoid the error described in the title

 

Could someone help me understand what is happening to this procedure. When I run it, I get the subject error. Thanks.

game := proc()
  local player1, player2, roll;
  roll := rand( 1..6 );
  player1 := roll():
  player2 := roll(2):
  if player1>player2 then "A wins"
  elif player1=player2 then "Tie"
  else "B wins"
  end if;
end proc:

Hi, I'm trying to solve a system of equation and I keep getting this error. Could anyone help me figure out what I'm doing wrong?

My problem is:

> alpha := .3; G := 3.5; L := 6; f := 1.1;

for i to 50 do

I0 := x(z)+y[i](z); ICon := x(0) = 1, y[i](0) = 0;

for j to 50 do

i <> j;

d1 := diff(x(z), z) = -G*x(z)*y[i](z)/IC-alpha*x(z);

d2 := diff(y[i](z), z) = G*y[i](z)*y[j](z)/IC-alpha*y[i](z);

dsys := {d1, d2};

F := dsolve({ICon, op(dsys)}, [x(z), y[i](z)], numeric);

end do;

end do;
Error, (in dsolve/numeric/process_input) unknown y[2] present in ODE system is not a specified dependent variable or evaluatable procedure


 

I am running Maple in a windows virtual machine, on a mac computer.

I have a number of worksheets on its disk

Windows advised me to run its error checking utility (chkdsk)

when I try and open them it gives me a number of options:

maple text

plain text 

and maple input

 

None of these are the same as the original files. What has happened? and how can i fix it?



The following error occurred when I simulate a build-in model, anyone could help me to solve this problem? Thanks first

guys i got this error permanently for everything , can anyone help me ?

@Carl Love Dear Sir i am trying to solve the system of nonlinear ODE equation with semiinfinite domain by using shooting method . but i am receiving following error 

"Error, (in isolate) cannot isolate for a function when it appears with different arguments"

how can i remove this error. i am unable to find the mistake. kindly help me 

I input:

solve({My(x, -(1/2)*b) = 0, My(x, (1/2)*b) = 0, w(x, -(1/2)*b) = 0, w(x, (1/2)*b) = 0}, {Am, Bm, Cm, Dm});

and recieved: 

Error, (in My) invalid input: diff received -1, which is not valid for its 2nd argument

 

My is 

My := proc (x, y) options operator, arrow; -((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)-((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+sum(-4*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(d(y), y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*(diff(po(y), y))*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*po(y)*a(y)^3*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))+16*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(a(y), y), y))/(Pi(y)^7*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-32*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+392*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(m(y), y))/(Pi(y)^8*m(y)^8*d(y))+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(d(y), y))/(Pi(y)^8*m(y)^7*d(y)^2)+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^8*d(y)^2)+4*(diff(diff(po(y), y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+8*(diff(po(y), y))*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+4*po(y)*a(y)^4*(2*(diff(Pi(y), y))^2*m(y)^2*y(y)^2+8*Pi(y)*m(y)*y(y)^2*(diff(Pi(y), y))*(diff(m(y), y))+8*Pi(y)*m(y)^2*y(y)*(diff(Pi(y), y))*(diff(y(y), y))+2*Pi(y)*m(y)^2*y(y)^2*(diff(diff(Pi(y), y), y))+2*Pi(y)^2*(diff(m(y), y))^2*y(y)^2+8*Pi(y)^2*m(y)*y(y)*(diff(m(y), y))*(diff(y(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(diff(m(y), y), y))+2*Pi(y)^2*m(y)^2*(diff(y(y), y))^2+2*Pi(y)^2*m(y)^2*y(y)*(diff(diff(y(y), y), y))+8*(diff(a(y), y))^2+8*a(y)*(diff(diff(a(y), y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(m(y), y), y))/(Pi(y)^7*m(y)^8*d(y))+48*po(y)*a(y)^2*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))^2/(Pi(y)^7*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))^2/(Pi(y)^9*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))^2/(Pi(y)^7*m(y)^9*d(y))+8*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))^2/(Pi(y)^7*m(y)^7*d(y)^3)-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(Pi(y), y), y))/(Pi(y)^8*m(y)^7*d(y)), m = 1 .. infinity) end proc;

[Lengthy, poorly formatted, and very-difficult-to-read plaintext prettyprint of the above procedure removed by a moderator.--Carl Love]

During a lengthy computation of mine - done using a well established and scientifically sensible external package - I get a Too many level of recursion error in PDEtools/NumerDenom.

Since it has always worked fine for simpler computation with the exact same code, I am wondering whether, with a bigger bound of the level of recursion, the computation could be succesful.

Which is the max level of recursion than maple allows?

Is it possibile to manually (at one's own risk) raise it, in the same line as raising, for instance, stacklimits kernel option?

Dear Friends,

I am solving 6 ODEs using maple15. then i got this error. anyone know abou this? thank you.

problem2.mw

 

 

restart:with (plots): B:=1:M:=1:Gr:=0.5:Pr:=3:w:=0.02:blt:=5:Bi:=10:

Eq1:=diff(f(eta),eta,eta,eta)-(diff(f(eta),eta))^(2)+f(eta)*diff(f(eta),eta,eta)+B*H(eta)*(F(eta)-diff(f(eta),eta))-M*diff(f(eta),eta)+Gr*theta(eta)=0;

diff(diff(diff(f(eta), eta), eta), eta)-(diff(f(eta), eta))^2+f(eta)*(diff(diff(f(eta), eta), eta))+H(eta)*(F(eta)-(diff(f(eta), eta)))-(diff(f(eta), eta))+.5*theta(eta) = 0

(1)

Eq2:=(1+Nr)*diff(theta(eta),eta,eta)+Pr*f(eta)*diff(theta(eta),eta)+(2/3)*H(eta)*B*(theta1(eta)-theta(eta))=0;

(1+Nr)*(diff(diff(theta(eta), eta), eta))+3*f(eta)*(diff(theta(eta), eta))+(2/3)*H(eta)*(theta1(eta)-theta(eta)) = 0

(2)

Eq3:=H(eta)*F(eta)+H(eta)*diff(G(eta),eta)+G(eta)*diff(H(eta),eta)=0;

H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0

(3)

Eq4:=F(eta)^2+G(eta)*diff(F(eta),eta)+B*(F(eta)-diff(f(eta),eta))=0;

F(eta)^2+G(eta)*(diff(F(eta), eta))+F(eta)-(diff(f(eta), eta)) = 0

(4)

Eq5:=G(eta)*diff(G(eta),eta)+B*(f(eta)+G(eta))=0;

G(eta)*(diff(G(eta), eta))+f(eta)+G(eta) = 0

(5)

Eq6:=G(eta)*diff(theta1(eta),eta)+l*B*(theta1(eta)-theta(eta))=0;

G(eta)*(diff(theta1(eta), eta))+l*(theta1(eta)-theta(eta)) = 0

(6)

bcs:=f(0)=0,(D(f))(0)=1,(D(theta))(0)=-Bi*(1-theta(0)),(D(f))(blt)=0,F(blt)=0,G(blt)=-f(blt),H(eta)=w,theta(blt)=0,theta1(blt)=0;

f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -10+10*theta(0), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(eta) = 0.2e-1, theta(5) = 0, theta1(5) = 0

(7)

L:=[0.5,1,1.5,2];

[.5, 1, 1.5, 2]

(8)

for k from 1 to 4 do p:=dsolve(eval({Eq1,Eq2,Eq3,Eq4,Eq5,Eq6,bcs},Nr=L[k]),[f(eta),F(eta),G(eta),H(eta),theta(eta),theta1(eta)],numeric,output=listprocedure);end do:

Error, (in dsolve/numeric/bvp) unevaluated names in system not allowed: {Y[9], Y[10]}

 

``

``

``

 

Download problem2.mw

Hi,

I want to display several plots insequence and tried creating a list of polygonplot3d objects called "plotlist" and using them as an argument like this:

display(plotlist)

which triggered the error message:

Error, (in plots:-display) expecting plot structure but received: plotlist

Where's my mistake and how could I achieve the desired outcome? (displaying polygon3dplots in sequence)

 

Best Regards

 

 

Hello,

I'm trying to calculate and export a huge "Strategy-Matrix". The calculation works in a smaller version with less possible strategies. For this version I use a specialised simulation-PC with enough memory (that was my problem using my own PC). But now I've got this error massage ("Kernel connection has been lost. You should save this worksheet and restart Maple. Executing commands in Maple requires a connection to the Maple kernel. Firewalls have been known to cause problems with kernel connections in Maple. Please ensure that any firewall software is configured to allow Maple to create connections to the kernel. Consult the FAQ for more information.")

The firewall should not be the problem. Below the code. num_Strat is 63001. 

Thank you in advance for your help.

 

m_Gi:= Matrix(num_Strat, num_Strat):

for t from 1 by 1 to num_Strat
do
Digits:= 5:
v_h2:= evalf((-(24/17)* v_pEi[t]^2)*v_h1 + (v_pEi[t]*(-(128/51)*v_pKi[t]+980/51))*v_h1+ v_pEi[t]*((40/51)*v_pKj+(15/17)*v_pEj)-((110/51)*v_pKi[t]^2)*v_h1 + v_pKi[t]*((55/51)*v_pKj+1220/51*v_h1+(10/17)*v_pEj)):
m_Gi(..,t):= v_h2:
end do:
ExportMatrix(TestMatrixNK, m_Gi):

I have the following functions: and 

I want to differentiate e(a,A) wrt A and I keep getting the following error

Error, invalid input: ln expects its 1st argument, x, to be of type algebraic, but received [gamma/(c(A)^(sigma*phi)-1+gamma)].

Not sure how to proceed.

Thanks in advance for your help.

 

Hi! 

 

I have been trying to solve the following system of equations:

 

ODEs:=diff(f[0, 0](x), x)+2.*f[0, 0](x)/x^5+.5000000000*f[0, 0](x)/x+0.1500000000e-1*f[0, 1](x)/sqrt(x) = -15.58845727*sin(.5773502693*x)/x^2+140.2961154*sin(.5773502693*x)/x^4-81.*cos(.5773502693*x)/x^3, diff(f[0, 1](x), x)+2.*f[0, 1](x)/x^5+.5000000000*f[0, 1](x)/x-0.6666666667e-2*f[0, 0](x)/sqrt(x) = -1039.230485*sin(.5773502693*x)/x^(5/2)+600.0000000*cos(.5773502693*x)/x^(3/2)-346.4101616*sin(.5773502693*x)/x^(9/2)+2078.460970*sin(.5773502693*x)/x^(13/2)-1200.000000*cos(.5773502693*x)/x^(11/2), f[0, 0](.1) = 1.503498543, f[0, 1](.1) = -1.053038610

 

Using dsolve I cant get it to work. I have tried both dverk78 and lsode methods, with default options. For example:

 

Sollsode := dsolve({ODEs}, numeric, method = lsode) 

 

Gives me the follwing error, if I try to estimate the solution anywhere past the initial point of 0.1: Error, (in Sollsode) an excessive amount of work (greater than mxstep) was done

I have also attempted to solve it with dverk78, thinking perhaps the improved accuracy of the method will help.

Soldverk := dsolve({ODEs}, numeric, method = dverk78) 

 

However I will get the following error message then: Error, (in Soldverk) cannot evaluate the solution past .10000000, step size < hmin, problem may be singular or error tolerance may be too small

 

 

Any ideas on how to proceed? Thanks so much!

1 2 3 4 5 6 7 Last Page 1 of 84