Items tagged with error error Tagged Items Feed

@Carl Love Dear Sir i am trying to solve the system of nonlinear ODE equation with semiinfinite domain by using shooting method . but i am receiving following error 

"Error, (in isolate) cannot isolate for a function when it appears with different arguments"

how can i remove this error. i am unable to find the mistake. kindly help me 

I input:

solve({My(x, -(1/2)*b) = 0, My(x, (1/2)*b) = 0, w(x, -(1/2)*b) = 0, w(x, (1/2)*b) = 0}, {Am, Bm, Cm, Dm});

and recieved: 

Error, (in My) invalid input: diff received -1, which is not valid for its 2nd argument

 

My is 

My := proc (x, y) options operator, arrow; -((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)-((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+sum(-4*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(d(y), y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*(diff(po(y), y))*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*po(y)*a(y)^3*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))+16*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(a(y), y), y))/(Pi(y)^7*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-32*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+392*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(m(y), y))/(Pi(y)^8*m(y)^8*d(y))+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(d(y), y))/(Pi(y)^8*m(y)^7*d(y)^2)+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^8*d(y)^2)+4*(diff(diff(po(y), y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+8*(diff(po(y), y))*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+4*po(y)*a(y)^4*(2*(diff(Pi(y), y))^2*m(y)^2*y(y)^2+8*Pi(y)*m(y)*y(y)^2*(diff(Pi(y), y))*(diff(m(y), y))+8*Pi(y)*m(y)^2*y(y)*(diff(Pi(y), y))*(diff(y(y), y))+2*Pi(y)*m(y)^2*y(y)^2*(diff(diff(Pi(y), y), y))+2*Pi(y)^2*(diff(m(y), y))^2*y(y)^2+8*Pi(y)^2*m(y)*y(y)*(diff(m(y), y))*(diff(y(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(diff(m(y), y), y))+2*Pi(y)^2*m(y)^2*(diff(y(y), y))^2+2*Pi(y)^2*m(y)^2*y(y)*(diff(diff(y(y), y), y))+8*(diff(a(y), y))^2+8*a(y)*(diff(diff(a(y), y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(m(y), y), y))/(Pi(y)^7*m(y)^8*d(y))+48*po(y)*a(y)^2*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))^2/(Pi(y)^7*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))^2/(Pi(y)^9*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))^2/(Pi(y)^7*m(y)^9*d(y))+8*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))^2/(Pi(y)^7*m(y)^7*d(y)^3)-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(Pi(y), y), y))/(Pi(y)^8*m(y)^7*d(y)), m = 1 .. infinity) end proc;

[Lengthy, poorly formatted, and very-difficult-to-read plaintext prettyprint of the above procedure removed by a moderator.--Carl Love]

During a lengthy computation of mine - done using a well established and scientifically sensible external package - I get a Too many level of recursion error in PDEtools/NumerDenom.

Since it has always worked fine for simpler computation with the exact same code, I am wondering whether, with a bigger bound of the level of recursion, the computation could be succesful.

Which is the max level of recursion than maple allows?

Is it possibile to manually (at one's own risk) raise it, in the same line as raising, for instance, stacklimits kernel option?

Dear Friends,

I am solving 6 ODEs using maple15. then i got this error. anyone know abou this? thank you.

problem2.mw

 

 

restart:with (plots): B:=1:M:=1:Gr:=0.5:Pr:=3:w:=0.02:blt:=5:Bi:=10:

Eq1:=diff(f(eta),eta,eta,eta)-(diff(f(eta),eta))^(2)+f(eta)*diff(f(eta),eta,eta)+B*H(eta)*(F(eta)-diff(f(eta),eta))-M*diff(f(eta),eta)+Gr*theta(eta)=0;

diff(diff(diff(f(eta), eta), eta), eta)-(diff(f(eta), eta))^2+f(eta)*(diff(diff(f(eta), eta), eta))+H(eta)*(F(eta)-(diff(f(eta), eta)))-(diff(f(eta), eta))+.5*theta(eta) = 0

(1)

Eq2:=(1+Nr)*diff(theta(eta),eta,eta)+Pr*f(eta)*diff(theta(eta),eta)+(2/3)*H(eta)*B*(theta1(eta)-theta(eta))=0;

(1+Nr)*(diff(diff(theta(eta), eta), eta))+3*f(eta)*(diff(theta(eta), eta))+(2/3)*H(eta)*(theta1(eta)-theta(eta)) = 0

(2)

Eq3:=H(eta)*F(eta)+H(eta)*diff(G(eta),eta)+G(eta)*diff(H(eta),eta)=0;

H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0

(3)

Eq4:=F(eta)^2+G(eta)*diff(F(eta),eta)+B*(F(eta)-diff(f(eta),eta))=0;

F(eta)^2+G(eta)*(diff(F(eta), eta))+F(eta)-(diff(f(eta), eta)) = 0

(4)

Eq5:=G(eta)*diff(G(eta),eta)+B*(f(eta)+G(eta))=0;

G(eta)*(diff(G(eta), eta))+f(eta)+G(eta) = 0

(5)

Eq6:=G(eta)*diff(theta1(eta),eta)+l*B*(theta1(eta)-theta(eta))=0;

G(eta)*(diff(theta1(eta), eta))+l*(theta1(eta)-theta(eta)) = 0

(6)

bcs:=f(0)=0,(D(f))(0)=1,(D(theta))(0)=-Bi*(1-theta(0)),(D(f))(blt)=0,F(blt)=0,G(blt)=-f(blt),H(eta)=w,theta(blt)=0,theta1(blt)=0;

f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -10+10*theta(0), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(eta) = 0.2e-1, theta(5) = 0, theta1(5) = 0

(7)

L:=[0.5,1,1.5,2];

[.5, 1, 1.5, 2]

(8)

for k from 1 to 4 do p:=dsolve(eval({Eq1,Eq2,Eq3,Eq4,Eq5,Eq6,bcs},Nr=L[k]),[f(eta),F(eta),G(eta),H(eta),theta(eta),theta1(eta)],numeric,output=listprocedure);end do:

Error, (in dsolve/numeric/bvp) unevaluated names in system not allowed: {Y[9], Y[10]}

 

``

``

``

 

Download problem2.mw

Hi,

I want to display several plots insequence and tried creating a list of polygonplot3d objects called "plotlist" and using them as an argument like this:

display(plotlist)

which triggered the error message:

Error, (in plots:-display) expecting plot structure but received: plotlist

Where's my mistake and how could I achieve the desired outcome? (displaying polygon3dplots in sequence)

 

Best Regards

 

 

Hello,

I'm trying to calculate and export a huge "Strategy-Matrix". The calculation works in a smaller version with less possible strategies. For this version I use a specialised simulation-PC with enough memory (that was my problem using my own PC). But now I've got this error massage ("Kernel connection has been lost. You should save this worksheet and restart Maple. Executing commands in Maple requires a connection to the Maple kernel. Firewalls have been known to cause problems with kernel connections in Maple. Please ensure that any firewall software is configured to allow Maple to create connections to the kernel. Consult the FAQ for more information.")

The firewall should not be the problem. Below the code. num_Strat is 63001. 

Thank you in advance for your help.

 

m_Gi:= Matrix(num_Strat, num_Strat):

for t from 1 by 1 to num_Strat
do
Digits:= 5:
v_h2:= evalf((-(24/17)* v_pEi[t]^2)*v_h1 + (v_pEi[t]*(-(128/51)*v_pKi[t]+980/51))*v_h1+ v_pEi[t]*((40/51)*v_pKj+(15/17)*v_pEj)-((110/51)*v_pKi[t]^2)*v_h1 + v_pKi[t]*((55/51)*v_pKj+1220/51*v_h1+(10/17)*v_pEj)):
m_Gi(..,t):= v_h2:
end do:
ExportMatrix(TestMatrixNK, m_Gi):

I have the following functions: and 

I want to differentiate e(a,A) wrt A and I keep getting the following error

Error, invalid input: ln expects its 1st argument, x, to be of type algebraic, but received [gamma/(c(A)^(sigma*phi)-1+gamma)].

Not sure how to proceed.

Thanks in advance for your help.

 

Hi! 

 

I have been trying to solve the following system of equations:

 

ODEs:=diff(f[0, 0](x), x)+2.*f[0, 0](x)/x^5+.5000000000*f[0, 0](x)/x+0.1500000000e-1*f[0, 1](x)/sqrt(x) = -15.58845727*sin(.5773502693*x)/x^2+140.2961154*sin(.5773502693*x)/x^4-81.*cos(.5773502693*x)/x^3, diff(f[0, 1](x), x)+2.*f[0, 1](x)/x^5+.5000000000*f[0, 1](x)/x-0.6666666667e-2*f[0, 0](x)/sqrt(x) = -1039.230485*sin(.5773502693*x)/x^(5/2)+600.0000000*cos(.5773502693*x)/x^(3/2)-346.4101616*sin(.5773502693*x)/x^(9/2)+2078.460970*sin(.5773502693*x)/x^(13/2)-1200.000000*cos(.5773502693*x)/x^(11/2), f[0, 0](.1) = 1.503498543, f[0, 1](.1) = -1.053038610

 

Using dsolve I cant get it to work. I have tried both dverk78 and lsode methods, with default options. For example:

 

Sollsode := dsolve({ODEs}, numeric, method = lsode) 

 

Gives me the follwing error, if I try to estimate the solution anywhere past the initial point of 0.1: Error, (in Sollsode) an excessive amount of work (greater than mxstep) was done

I have also attempted to solve it with dverk78, thinking perhaps the improved accuracy of the method will help.

Soldverk := dsolve({ODEs}, numeric, method = dverk78) 

 

However I will get the following error message then: Error, (in Soldverk) cannot evaluate the solution past .10000000, step size < hmin, problem may be singular or error tolerance may be too small

 

 

Any ideas on how to proceed? Thanks so much!

Hey people,

 

I am trying to get the following code to run, but it keeps returning an error about too many arguments

 

restart:with(plots):with(PDEtools):
alpha_const := 0.5:gamma_const := 2.5: D1 := 0.05: D2 := 0.002:
A := diff_table(a(x,t)):B := diff_table(b(x,t)):
Selkov[1] := A[t] = 1 - A[]*B[]^(gamma_const) + D1*A[x,x]:
Selkov[2] := B[t] = alpha_const * ( A[]*B[]^(gamma_const) - B[]) + D2 * B[x,x]:

bc[1] := D[1](a)(0,t)=0: bc[2] := D[1](b)(0,t)=0: bc[3] := D[1](a)(4*Pi,t) = 0: bc[4]:=D[1](b)(4*Pi,t)=0:

ic[1] := eval(A[],t=0)=a_0:ic[2] := eval(B[],t=0)=b_0:
case1 := eval(ic,[a_0=1,b_0=1]):
case2 := eval(ic, [a_0=piecewise((x<2*Pi+1) and (x>2*Pi-1), 0.99, 1), b_0=piecewise((x<2*Pi+1) and (x>2*Pi-1), 0.99, 1)]):

Case1Default := pdsolve({Selkov[1],Selkov[2]},{bc[1],bc[2],bc[3],bc[4],case1[1],case1[2]},numerical);


Error, (in pdsolve/sys) too many arguments; some or all of the following are wrong: [{a(x, t), b(x, t)}, {a(x, 0) = 1, b(x, 0) = 1, (D[1](a))(0, t) = 0, (D[1](a))(4*Pi, t) = 0, (D[1](b))(0, t) = 0, (D[1](b))(4*Pi, t) = 0}, numerical]

 

My code worked just earlier today, and now it wont. If i try to run pdsolve({Selkov[1],Selkov[2]}) it says that there is an error with general case of floats. 

 

You help is greatly appreciated!

how to graph in maple 

for example

 

-2 < x < -3, h

-1 < x < -2, b

 

why do I get the error Error, (in rtable/Sum) invalid arguments

In positive numbers, I get it ok

Hi everyone,

 

i'm trying to find out the euler angles from a rotation matrix.

I have a matrix that contains the result of multpilying the 3 axis rotation R(z,c)*R(y,b)*R(x,a) without knowing the values of the angles a,c,b (that's what I want to find out), so there are sinus and cosinus everywhere. There is another matrix containing the expected values that each equation in the first matrix will match.

My problem is that I eventually will change the order of the multiplication of the axis (i.e. R(x,a)*R(z,c)*R(y,b)) and I'm try to make maple compute this for me.

I defined R(x,a), R(y,b) and R(z,c) as follows:

Rx := Matrix (3,3, [1,0,0,0,cos(a),-sin(a),0,sin(a),cos(a)]);    
Ry := Matrix (3,3, [sin(b), 0, cos(b), 0, 1, 0, -sin(b), 0, cos(b)]);
Rz := Matrix (3,3, [cos(c), -sin(c), 0, sin(c), cos(c), 0, 0, 0, 1]);
and
RT := Multiply(Multiply(Rx,Rz),Ry);

Since here is alright. Now I want to match RT to the solution matrix.

g1 := RT[1,1] = mat[1,1];
g2 := RT[1,2] = mat[1,2];
g3 := RT[1,3] = mat[1,3];
g4 := RT[2,1] = mat[2,1];
g5 := RT[2,2] = mat[2,2];
g6 := RT[2,3] = mat[2,3];
g7 := RT[3,1] = mat[3,1];
g8 := RT[3,2] = mat[3,2];
g9 := RT[3,3] = mat[3,3];

soll := fsolve({g1,g2,g3,g4,g5,g6,g7,g8,g9},{a,b,c});

At this point I'm getting an error. I know that there are more equations than variables but the system is solvable anyway.
What maple trick can I do to solve this system or to find the good 3 equations?

 

Extra question:

Is there any method to match RT to mat without all those gX equations?

 

Thank you everyone.

what should I do with this error:

"the specified procedure could not be found"

"the Kernel loader cannot find maple engine library,maple.........."

This error appears at the beginning of  use ! 

Heyho,

I'm pretty new to Maple (started Monday). And I don't know how to solve (or even why it exists) the following error:

S3() generates two integers, one converted from a random 568-Bit-number "e" and one converted from a random 160-bit number "kp1", satisfying gcd(e,kp1)=1.
That works pretty fine so far.

 

Now I need two specific numbers, x and y defined by:

 

And I use the proc S4 to get them:

 

Sometimes, the error occurs "Error, (in S4) the modular inverse does not exist", and I dont get why,... I tried to fix it, with the "while"-loop, but it didnt work out yet.

Someone knows how to solve this problem?
Thanks!

 

Hi

I can not my software,I get this error"the specified procedure could not be found"

what should I do?

 

Hi,

 

I'm trying to create interactive plots by using Explore to help demonstrate the effects parameters have on functions. I created one successfully to illustrate shifts and stretches of a polynomial:

 

transform(A,B,X,H,P,K):=Explore(plot(a*(b*x+h)^(p)+k,x=X),parameters=[a=A, b= B,h=H,p=P,k=K],placement=right)

 

However when I try to do the same with a solved ODE it returns an error message:

 

Explore(plot(1/(-p*x+x+1)^(1/(p-1)), x = -5 .. 5), parameters = [p = -20 .. 20], placement = right);

 

Executing this gives the error message: 

Warning, expecting only range variable x in expression 1/((-p*x+x+1)^(1/(p-1))) to be plotted but found name p
INTERFACE_PLOT(AXESLABELS(x, ""),

VIEW(-5. .. 5., DEFAULT, _ATTRIBUTE("source" = "mathdefault"))),

parameters = [p = -20 .. 20], placement = right

 

I'm not sure why it is having difficulty dealing with "p" when it had no difficulty with the first. Any help would be appreciated!

1 2 3 4 5 6 7 Last Page 1 of 83