Items tagged with euclidean euclidean Tagged Items Feed

This is my code for the Extended Euclidean Algorthim which should return integer l, polynomials pi,ri,si,ti for 0<=i<=l+1. And polynomial qi for 1<=i<=l such that si(f)+ti(g) = ri and sl(f)+tl(g)=rl=GCD(f,g).
The problem is, I keep getting division by zero. Also it evaluates pi = lcoeff(ri-1 - qiri) to be zero, everytime. Even when I remove this it still says there is a division of zero, which must be coming from qi:=quo(ri-1,ri, x); however I do not know why considering the requirements for the loop are that r[i] not equal zero. I really could use a fresh pair of eyes to see what I've done wrong. Any help would be greatly appreciated!!

Consider two sets in the Euclidean plane, each consisting of 4 points.

First set:  A(0, 0),  B(3, 4),  C(12, 4),  E(4, -1)

Second set:  F(0, -8),  G(12, -4),  H(9, -8),  K(4, -9)

It is easy to check that the set of all pairwise distances between the points of each of the given sets (6 numbers for each set ) are the same. At the same time it is obvious that there is no any...

Here is , seemingly simple task:
In the Euclidean plane are given two sets, each with 4 points. It is known that all possible pairwise distances between the points of the first set coincide with all possible pairwise distances between the points of the second set, ie we obtain two sets of numbers, in each of which six numbers. Of course, the numbers in each numeric set can be repeated (such sets are called multisets).  Can we say that there is an isometry of...

Page 1 of 1