Items tagged with expand expand Tagged Items Feed

hi  for example to calculate the following

residue((Psi(-z)+Eulergamma)^2*h(z), z = 2)

gives

3*h(2)+(D(h))(2)

but it possible to write 

as( Psi(2)+Eulergamma(z))*h(2)+(D(h))(2)

so that 

and Psi(z)+Eulergamma== harmonicNumber(z-1)

the result must be

harmonicNumber(2)*h(2)+(D(h))(2)

it is possible that Maple gives explit form of the values function avoid to calculate automatic.

thanks

I am trying to expand out the terms  of equation 13.  The expand command causes the lhs to be zero?


Initialize the metric and tetrad

 

restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1.1)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(1.2)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(1.3)

declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(1.4)

NULL

vierbien = Matrix([[1, 0, -Ybar(zetabar, zeta, v, u), 0], [0, 1, -Y(zetabar, zeta, v, u), 0], [Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Physics:-`*`(H(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1-Physics:-`*`(Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Ybar(zetabar, zeta, v, u)), H(zetabar, zeta, v, u)], [Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u), -Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1]])

vierbien = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1}))

(1.5)

``

NULL

Setup(tetrad = rhs(vierbien = Matrix(%id = 18446744078213056502)), metric = ds2, mathematicalnotation = true, automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), signature = "+++-")

[automaticsimplification = true, coordinatesystems = {X}, mathematicalnotation = true, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}, signature = `+ + + -`, tetrad = {(1, 1) = 1, (1, 3) = -Ybar(X), (2, 2) = 1, (2, 3) = -Y(X), (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}]

(1.6)

gamma_[4, 1, 1] = 0

diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0

(1)

gamma_[4, 2, 2] = 0

diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0

(2)

gamma_[1, 4, 4] = 0

(diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0

(3)

gamma_[2, 4, 4] = 0

(diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0

(4)

gamma_[3, 4, 4] = 0

0 = 0

(5)

gamma_[4, 4, 4] = 0

0 = 0

(6)

shearconditions := {diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0, diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0, (diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0, (diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0}:

 

 

RicciT := proc (a, b) options operator, arrow; SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; SumOverRepeatedIndices(D_[b](f)*e_[a, `~b`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[b](f), Physics:-Tetrads:-e_[a, `~b`])) end proc

(8)

SlashD(f(X), 1)

diff(f(X), zeta)-Ybar(X)*(diff(f(X), u))

(9)

SlashD(f(X), 2)

diff(f(X), zetabar)-Y(X)*(diff(f(X), u))

(10)

SlashD(f(X), 3)

(1+H(X)*Y(X)*Ybar(X))*(diff(f(X), u))-H(X)*((diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v))

(11)

SlashD(f(X), 4)

-Y(X)*Ybar(X)*(diff(f(X), u))+Ybar(X)*(diff(f(X), zetabar))+(diff(f(X), zeta))*Y(X)+diff(f(X), v)

(12)

NULL

  simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), u))+2*(diff(Y(X), u))*Ybar(X)*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v))) = 0

(13)

``

0 = 0

0 = 0

(14)

``

Why does the expand command cause the lhs to be zero?

NULL


Download Question_R12.mw

When I write in maple the following:

x*(x+y)

 

What do I need to write to make maple make the operation that will evaluate the expression and show the following?

 

x^2+x*y

 

simplify(%) or evaluate(%) only shows it the same way it was inputted to start with.

I am trying separation of variables in Maple. I get an equation that has the form   

And now I want to tell Maple to assign the terms with 1/R in them to one variable, say eq21, and the term with 1/Z to second variable, say eq22 The idea is that I can later more easily work with each separate ode. 

I do not know to separate those apart. I could offcourse copy and paste by hand, but I want to automate this.

I tried match() and patmatch() but I am not seeing the way. Here is the code:

restart;
T:=  (r,z)-> Z(z)*R(r);
eq1:= diff(T(r,z),r$2)+1/r*diff(T(r,z),r)+diff(T(r,z),z$2);
eq2:=expand(eq1/(Z(z)*R(r)));

#need now way to break the above into 2 different variables.

ps. I know I can do this:

restart;
T:=  (r,z)-> Z(z)*R(r);
eq1:= diff(T(r,z),r$2)+1/r*diff(T(r,z),r)+diff(T(r,z),z$2);
eq2:=expand(eq1/(Z(z)*R(r)));
eq3:=collect(eq2,1/R(r));
eq21:=op(1,eq3);
eq22:=op(2,eq3);

But this for me is not the right way to do it. I think there should be more algebraic way.

 

AOA... How are you all. I need the answer of the following question.

 

input in Maple: expand(exp(a+b)+exp(c+b))

output:  exp(a)*exp(b)+exp(c)*exp(b)

and

input in Maple: expand(exp(2a+b)+exp(3c+b))

output:  (exp(a))^2*exp(b)+(exp(c))^3*exp(b)

but i need exp(2a)*exp(b)+exp(3c)*exp(b)

 

PhD (Scholar)
Department of Mathematics

Hi Maple friends.

expand( (a+b)^2 );

a^2+2*a*b+b^2

expand( (a+b)^3 );

a^3+3*a^2*b+3*a*b^2+b^3

expand( (a+4)^4 )

a^4+16*a^3+96*a^2+256*a+256 (???)

Pascal's triangle shows that 'expand( (a+4)^4 )' should have resulted in a^4+4*a^3*b+6*a^2*b^2+4*a*b^3+b^4

Where are the b variables in Maple's solution?

Thanks in advance.

expand( (a+b)^n)

 

convert((a+b)^n,Sum) 

 

none  expands in  binomial  form.  Is there any way for Maple to generate  binomial  expansion of (a+b)^n  without

 

entering  manually.

 

martin

Please tell me how to do about the following problem to me.

 

g:=(b*y)^k*k*y;

simplify(%);

Then, what I obtained was (b*y)^k*k*y, not (b^k)*k*y^(k+1).

expand of the command brought the same answer not (b^k)*k*y^(k+1).

Please tell me what was wrong to my calculation.

 

Thank you in advance.

 

Taro.

 

intergration

f:=Intat(1.0000000000000000000*(1.7969454312181156991*_f^1.2+1.80)^1.2/sqrt(-1.4974545260150964159*(8.9847271560905784954*_f^3+14.640368911168931285*_f^2+30.220202497712627297)^1.2), _f = 0);

 

I tried to use  value(f);  eval(f); simplify(f); expand(f), but non provide an answer, but return an integral unevaluated.

 

Is there a command to produce a  numerical result ?

I am trying to expand  a rational function that is in the form:

P(z) = (1 + z1)2 (1 + z)2· (r1z + r0 + r1z1)

to the form:

 

P(z) = r1z3 + (4r1 + r0)z2 + (7r1 + 4r0)z + (8r1 + 6r0)

 

+(7r1 + 4r0)z1 + (4r1 + r0)z2 + r1z3

Can someone show me how to do this please?

 

 

This is just a question on terminology. The name "combine" implies pulling terms together. Yet, when applied to something like sin(x)^2 it has the effect of expanding it:

r:=sin(x)^2;
combine(r);

 

Which seems counter-intutive to me. I tried first expand(r) but that did not expand it.

Fyi, in Mathematica the function to do the above is called

Sin[x]^2;
TrigReduce[%]

    1/2 (1 - Cos[2 x])

As Mathematica does not have a Combine[] function.

So, I am just wondering about the naming, that is all. I would never have thought first that a command called combine() will expand sin(x)^2.

 

 

Dear All,

I need your help, what function in Maple must be used to find the different form of this function

f := product((p*beta[1]*(t[i]/theta[1])^(beta[1]-1)*exp(-(t[i]/theta[1])^beta[1])/theta[1])^Y[i]*((1-p)*beta[2]*(t[i]/theta[2])^(beta[2]-1)*exp(-(t[i]/theta[2])^beta[2])/theta[2])^(1-Y[i]), i = 1 .. n)

into this function

Hi, friends:

 

Having an expression like this:

ee:=(c^2+a^2-b^2)*(a^2-c^2)^3*(a^2+c^2)^3;

 

What is the right way to get:

ee:=(c^2+a^2-b^2)*(a^4-c^4)^3 ?

 

I have tried:

ee:=applyrule((X::algebraic^k::integer + Y::algebraic^k::integer)^n::integer *
                     (X::algebraic^k::integer - Y::algebraic^k::integer)^n::integer = (X^(2*k)+Y(2*k))^n, ee) 

Hi,

 

I need to expand a function of the form {[1]}.{[2]}.({[2, 3]}-{[3, 2]}).({[1, 3]}-{[3, 1]}), where '.' is for non-commutative multiplication. I need to get  {[1]}.{[2]}.{[2,3]}.{[1,3]} - {[1]}.{[2]}.{[2,3]}.{[3,1]} - ... (the order of matters).

 

Maple has a command 'expand', but that only works for normal products. eg. {[1]}*{[2]}*({[2, 3]}-{[3, 2]})*({[1, 3]}-{[3, 1]}).

 

Any help appreciated!

Is there a command the takes (A*B)a and returns Aa*Ba ?

I tried expand and  simplify and also used assuming a>1 but without luck here...

I know this is very basic but I have monster product expressions that I need to be able to raise every term inside the parenthesis by the power so I can isolate some terms of interest.

1 2 3 Page 1 of 3