Hi, I have the equations (below) with different parameters. I'd like to find out if is it possitble to:

(1) Create a loop that solves for values of on of the parameters, T, in the interval -0.3<T<0.3 and obtain the solutions allowing for a grid of 0.01.

That is, if one can first solve for T= -0.3 and then use the loop with increments that raise T by 0.01 each time until T=0.3. Other parameters are held constant at their assigned values.

(2) Generates the corresponding vectors for T and all the endogenous variables.

eq1 := PI_T = alpha*M*(kappa/(1+kappa-sigma)-1):

eq2 := l = alpha*((sigma-1)*kappa/(1+kappa-sigma)+1):

eq3 := M = phi_c^(-kappa)*F:

eq4 := e*F = PI_T*v+T:

eq5 := M*l+L_A = L_s:

eq6 := F*e+A = A_s:

eq7 := A = (1-beta)*(L_s+(1-v)*PI_T-T):

eq8 := A_s = L_A:

eq9 := p = sigma/((sigma-1)*phi):

eq10 := P_Y = M^(lambda/(1-sigma))*p:

eq11 := L_s = N*(theta*P_Y^beta)^(-1/delta):

eq12 := phi = (kappa/(1+kappa-sigma))^(1/(sigma-1))*phi_c:

eq13 := U = delta*theta*L_s/((1+delta)*P_Y^beta)+((1-v)*PI_T-T)/P_Y^beta:

Params:= [ T=0, N = 1, v = 1, beta = .75, lambda = 1, sigma = 5, kappa = 4.8, delta = 2, theta = 2.591350635, alpha = 0.3998699153e-1, e = 0.8333333332e-1]:

Init_Values:= {A_s = .2500000000, l = .9996747882, PI_T = 0.8333333332e-1, L_A = .2500000000, phi = 1.878101496, M = .4168022157, A = .1666666667, p = .6655657336, P_Y = .8283396488, L_s = 2/3, phi_c = 1.2, F = 1, U = 1.326439132 }:

SOL:= fsolve(eval({eq||(1..13)}, Params), Init_Values);

Many thanks!!