Items tagged with geometry geometry Tagged Items Feed

n := 5:
z1 := exp(2*3.14*I*k1/n)*cosh(z)^(2/n);
z2 := exp(2*3.14*I*k2/n)*sinh(z)^(2/n);
xx := Re(z1);
yy := Re(z2);
uu := cos(alpha)*Im(z1) + sin(alpha)*Im(z2);

i find that the 3d graph has many intersection points to itself

how to find these intersection points of calabi yau ?

 

 

Pick any point P and let Q = (1, 1, 1). [Your choice for P can be anything other than the origin or

Find an equation for the line l1 that passes through P and the origin. Plot the line segment formed by P and the origin in Maple 

How would I plot this?

I try to define an ellipse using the geometry package

with(geometry):

ellipse(e1,['foci'=[[0,1],[4,1]], 'MajorAxis' = 8],[x,y]);

 

I get the message:  Error, (in geometry:-ellipse) wrong type of arguments

but the documentation tells me that I can define an ellipse this way...

 

Please help me solve this question using maple (need the steps in solving).

  The geometry of the triangle
  Romanova Elena,  8 class,  school 57, Kazan, Russia

       Construction of triangle and calculation its angles

       Construction of  bisectors
      
       Construction of medians
      
       Construction of altitudes


> restart:with(geometry):      

The setting of the height of the triandle and let's call it "Т"
> triangle(T,[point(A,4,6),point(B,-3,-5),point(C,-4,8)]);

                                  T

        Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);

Construction of the triangle АВС

> draw({T(color=gold,thickness=3)},printtext=true,axes=NONE);     
Calculation of the distance between heights А and В - the length of a side АВ

> d1:=distance(A,B);

                           d1 := sqrt(170)

        
        Calculation of the distance between heights В and С - the length of a side ВС
> d2:=distance(B,C);

                           d2 := sqrt(170)

       The setting of line which passes through two points А and В
> line(l1,[A,B]);

                                  l1

       Display the equation of line l1
> Equation(l1);
> x;
> y;

                         -2 + 11 x - 7 y = 0

        The setting of line which passes through two points А and С
> line(l2,[A,C]);

                                  l2

       Display the equation of line l2
> Equation(l2);
> x;
> y;

                          56 - 2 x - 8 y = 0

         The setting of line which passes through two points В and С
> line(l3,[B,C]);

                                  l3

        Display the equation of line l3
> Equation(l3);
> x;
> y;

                          -44 - 13 x - y = 0

        Check the point А lies on line l1
> IsOnLine(A,l1);

                                 true

        Check the point А lies on line l1
> IsOnLine(B,l1);

                                 true

        Calculation of the andle between lines l1 and l2
> FindAngle(l1,l2);

                              arctan(3)

        The conversion of result to degrees
> b1:=convert(arctan(97/14),degrees);

                                      97
                               arctan(--) degrees
                                      14
                     b1 := 180 ------------------
                                       Pi

        Calculation of decimal value of this angle
> b2:=evalf(b1);

                      b2 := 81.78721981 degrees

        Calculation of the andle between lines l1 and l3
> FindAngle(l1,l3);

                             arctan(3/4)

       The conversion of result to degrees
> b3:=convert(arctan(97/99),degrees);

                                      97
                               arctan(--) degrees
                                      99
                     b3 := 180 ------------------
                                       Pi

        Calculation of decimal value of this angle
> b4:=evalf(b3);

                      b4 := 44.41536947 degrees

       Calculation of the angle between lines l2 and l3
> FindAngle(l2,l3);

                              arctan(3)

       The conversion of  result to degrees
> b5:=convert(arctan(97/71),degrees);

                                      97
                               arctan(--) degrees
                                      71
                     b5 := 180 ------------------
                                       Pi

        Calculation of decimal value of  this angle
> b6:=evalf(b5);

                      b6 := 53.79741070 degrees

        Check the sum of all the angles of the triangle
> b2+b4+b6;

                         180.0000000 degrees

        Analytical information about the point А
> detail(A);
   name of the object: A
   form of the object: point2d
   coordinates of the point: [4, 6]
          Analytical information about the point В
> detail(B);
   name of the object: B
   form of the object: point2d
   coordinates of the point: [-3, -5]
          Analytical information about the point С
> detail(C);
   name of the object: C
   form of the object: point2d
   coordinates of the point: [-4, 8]

   The setting of heights of the triangle points A,B,C and let's call it "Т"

   with(geometry):
> triangle(ABC, [point(A,7,8), point(B,6,-7), point(C,-6,7)]):
        The setting of the bisector of angle А in triandle АВС
> bisector(bA, A, ABC);

                                  bA

        Analytical information about the bisector of angle А in the triandle
> detail(bA);
   name of the object: bA
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (15*170^(1/2)+226^(1/2))*_x+(-13*226^(1/2)-170^(1/2))*_y+97*226^(1/2)-97*170^(1/2) = 0

        Construction of the triangle
> draw(ABC,axes=normal,view=[-8..8,-8..8]);

 Construction of the triangle ABC

> draw({ABC(color=gold,thickness=3)},printtext=true,axes=NONE);     

 Construction of the bisector of angle А

> draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3)},printtext=true,axes=NONE);    

The setting of the bisector of angle В in the triangle АВС

> bisector(bB, B, ABC);

                                  bB

       Analytical information about the bisector of angle B in the triandle
> detail(bB);
   name of the object: bB
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (-15*340^(1/2)-14*226^(1/2))*_x+(-12*226^(1/2)+340^(1/2))*_y+97*340^(1/2) = 0

         Construction of the bisector of angle В
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3)},printtext=true,axes=NONE);    



    The setting of the bisector of angle С in the triangle АВС

> bisector(bC, C, ABC);

                                  bC

        Analytical information about the bisector of angle С in the triangle
> detail(bC);
   name of the object: bC
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: (14*170^(1/2)-340^(1/2))*_x+(13*340^(1/2)+12*170^(1/2))*_y-97*340^(1/2) = 0

        Construction of the bisector of angle С
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3)},printtext=true,axes=NONE);  

 Calculation of the point of intersection of the bisectors and let's call it "О"

> intersection(O,bA,bB,bC);coordinates(O);

                                  O


     7 sqrt(85) - 3 sqrt(2) sqrt(113) + 3 sqrt(85) sqrt(2)
  [2 -----------------------------------------------------,
       sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

          -16 sqrt(85) - 7 sqrt(2) sqrt(113) + 7 sqrt(85) sqrt(2)
        - -------------------------------------------------------]
             sqrt(85) sqrt(2) + sqrt(2) sqrt(113) + 2 sqrt(85)

       Construction of the bisectors and  marking of the point of intersection  "О" in the triandle
>draw({ABC(color=gold,thickness=3),bA(color=green,thickness=3),bB(color=red,thickness=3),bC(color=blue,thickness=3),O},printtext=true,axes=NONE);
> restart:
> with(geometry):
       The setting of the heights of the triangle points A,B,C and let's call it "Т"
> point(A,7,8),point(B,6,-7),point(C,-6,7);

                               A, B, C

        Let's call "Т1"
> triangle(T1,[A,B,C]);

                                  T1

        Construction of "Т1"
> draw(T1(color=gold,thickness=3),axes=NONE,printtext=true);
  The setting of the median from the point В in the trianglemedian(mB,B,T1,B1);
> median(mb,B,T1);

                                  mB


                                  mb

        Construction of the median from the point В
> draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mb},printtext=true,axes=NONE);

The setting of the median from the point А in the trianglemedian(mA,A,T1,A1);
> median(ma,A,T1);

                                  mA


                                  ma

        Construction of the median from the point А
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),ma},printtext=true,axes=NONE);
The setting of the median from the point С in the trianglemedian(mC,C,T1,C1);
> median(mc,C,T1);

                                  mC


                                  mc

        Costruction of the median from the point С
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=maroon,thickness=3)},printtext=true,axes=NONE);




Calculation of the point of  intersection of the median and let's call it "О"

>intersection(O,ma,mb,mC);coordinates(O);

                                  O


                              [7/3, 8/3]

        Construction of medians and marking of the point of  intersection "О" in the triangle
>draw({T1(color=gold,thickness=3),mB(color=green,thickness=3),mA(color=magenta,thickness=3),mA,mC(color=violet,thickness=3),O},printtext=true,axes=NONE);
> restart:with(geometry):
> _EnvHorizontalName:=x:_EnvVerticalName=y:       The setting of the heights of the triangle points A, B, C  and let's call it "Т"
> triangle(T,[point(A,7,8),point(B,6,-7),point(C,-6,7)]);

                                  T

       Construction of the triangle
> draw(T,axes=normal,view=[-8..8,-8..8]);


The setting of the altitude in the triangle from the point Сaltitude(hC1,C,T,C1);
> altitude(hC,C,T);

                                 hC1


                                  hC

        Analytical information about the altitude hC from the point С in the triangle
> detail(hC);
   name of the object: hC
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -99+_x+15*_y = 0

        Construction of the altitude from the point С
> draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hC},printtext=true,axes=NONE);     

  The setting of the altitude in the triangle from the point Аaltitude(hA1,A,T,A1);
> altitude(hA,A,T);

                                 hA1


                                  hA

        Analytical information about the altitude hA from the point А in the triangle
> detail(hA);
   name of the object: hA
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -28-12*_x+14*_y = 0

        Construction of the altitude from the point А
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hA1},printtext=true,axes=NONE);       The setting of the altitude from the point В

> altitude(hB1,B,T,B1);
> altitude(hB,B,T);

                                 hB1


                                  hB

        Analytical information about the altitude hB from the point В in the triangle
> detail(hB);
   name of the object: hB
   form of the object: line2d
   assume that the name of the horizonal and vertical                    axis are _x and _y
   equation of the line: -71+13*_x+_y = 0

        Consruction of the altitude from the point В
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1},printtext=true,axes=NONE);     
 Calculation of the point of intersection of altitudes and let's call it "О"

>intersection(O,hB,hA,hC);coordinates(O);

                                  O


                               483  608
                              [---, ---]
                               97   97

        Construction of altitudes and marking of the point of intersection "О" in the triangle
>draw({T(color=gold,thickness=3),hC1(color=green,thickness=3),hA1(color=red,thickness=3),hB1(color=blue,thickness=3),hB1,O},printtext=true,axes=NONE);




 

 

 

 

 

 

 

 

 

 

 

 

 

Construction of standard quadrilaterals

      Muchametshina Liya,  8th class,  school № 57, Kazan, Russia


                   Square

                  Rectangle     
                  
                  Rhombus        
 
                  Parallelogram

                   Trapeze

Construction of square

> restart:
> with(plottools):
       Сoordinates (x;y) of the lower left corner of the square and the side "а"
> x:=0;y:=3;a:=6;

                                x := 0


                                y := 3


                                a := 6

      Construction of the square
> P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
> plots[display](P1,scaling=CONSTRAINED);

The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
> plots[display](P1,P2,scaling=CONSTRAINED);

Construction of rectangle

> restart:
> with(plottools):
        Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
> x:=0;y:=2;a:=3;b:=9;
>

                                x := 0


                                y := 2


                                a := 3


                                b := 9

       The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
> l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
> plots[display](l,scaling=CONSTRAINED,thickness=4);
Construction of rhombus

> restart:
> with(plottools):
      The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
> x:=0;y:=2;a:=3;b:=4;

                                x := 0


                                y := 2


                                a := 3


                                b := 4

       Rhombus is specified by the sequence of vertices with the values "a" and "b"
> ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
> plots[display](ll,scaling=CONSTRAINED,thickness=4);

Construction of parallelogram

> restart:
> with(plottools):
      (х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
> x:=0;y:=0;i:=4;j:=5;a:=10;

                                x := 0


                                y := 0


                                i := 4


                                j := 5


                               a := 10

     The parallelogram is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
 If  i= 0  it turns out the rectangleget.
       If  j= а  it turns out the  square.
       If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

Construction of trapeze

Trapeze general form
> restart:
> with(plottools):
>
        (х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
> x:=0;y:=2;i:=1;j:=5;a:=11;

                                x := 0


                                y := 2


                                i := 1


                                j := 5


                               a := 11

         The trapez is defined by the sequence of vertices     
> P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Rectangular trapezoid
> restsrt:
> with(plottools):
> x:=0;y:=2;i:=0;j:=6;a:=11;

                                x := 0


                                y := 2


                                i := 0


                                j := 6


                               a := 11

> P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Isosceles trapezoid
> restart:
> with(plottools):
> x:=0;y:=2;i:=4;j:=6;a:=15;

                                x := 0


                                y := 2


                                i := 4


                                j := 6


                               a := 15

> P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);



 

 

 

Hello, when you run an error occurs:

Error, (in plots:-display) unknown plot object: circle
Error, (in plots:-display) expecting plot structure but received: P[0]
Error, (in plots:-display) expecting plot structure but received: PP

I'm not good in Maple. Please help me understand.

Programm: https://dropmefiles.com/Qnkzn

I attempted to show that two lines are parallel.  I started with a problem in Geometry for which I do not have the solution.

I tried several ways with Maple to show this to be true.  Most of the time, I ended when maple could not determine if a-b = c-d, etc.

brg_proof.txt contains a statement of the problem and my latest maple code.

Question: How should I approach the proof, by the compass and straight edge method?  Is this possible in maple?

intersection in the geometry package does not seem to recognize assume.

restart: with(geometry):

assume(p[1]<>0, p[2]<>0, p[3]<>0);
assume(q[1]<>0, q[2]<>0, q[3]<>0);
point(T,[p[1],q[1]]);
point(U,[p[2],q[2]]);
point(V,[p[3],q[3]]);
point(Op,[0,0]);

line(OT,[Op,T]);
line(OU,[Op,U]);
line(OV,[Op,V]);

point(B,2*q[2],solve(subs(x=2*q[2],Equation(OU)),y));
coordinates(B);
IsOnLine(B,OU);

PerpendicularLine(AD,B,OT);
ArePerpendicular(AD,OT);
sol:=solve({Equation(AD),Equation(OT)},{x,y});
eval(x,sol);
point(A,eval(x,sol),eval(y,sol));  ## the intersection exists
intersection(xA,AD,OT); ## fails
about(p[1]),about(q[1]);

Hi all,

I have three points in 3d space say A1=[a11, a12, a13]; A2=[a21, a22, a23] and A3=[a31, a32, a33]. I want to fill the triangle formed by these points. How can I do that?

Thanks is advance.

I can draw a triangle using the geomtry package:

point(A, 0, 0), point(B, 2, 1), point(C, 2, 0); triangle(T, [A, B, C])
d := draw(T, axes = none, color = black); t := textplot([[.227, 0.60e-1, typeset(theta)], [1.1, 0, typeset(k__2)]])
display(t,d)

The result is as below.

 

I would like to place the label k2 below the line but negative numbers do not work. I would like to put a label k1 to the right of
the opposite side but there is no room,  and finally I would like to put sqrt(k1^2+k2^2) above the hypotenuse slanted to be
parallel with the hypotenuse if possible.

  Hi, there

How can I draw the excircles, incircles,circumcircle and their centers of a triangle simultaneously with maple13 in a geometric plot? please specify the commands.

many thanks for your help

M.R.Yegan

of a (concrete/general) triangle, making use of Maple tools in an efficient way?  Mathematica applies the barycentric coordinates and the Dirichlet distribution to this end. More generally, how to efficiently choose a random point in a given bounded region?

The docs for the package geometry say:

 

The command with(geometry,distance) allows the use of the abbreviated form of this command.

I am new to Maple. What is the abbreviated form of the distance command?

1 2 3 4 5 6 7 Page 1 of 8