Items tagged with graph graph Tagged Items Feed

Hi all.

I'm a student learning Algebra.

I've been searching everywhere and cannot work out how to plot and analyze a function graphically in Maple.

 

For example, you can see in this video, There is a point for the Vertex of a parabola on the example

http://www.maplesoft.com/TeacherResource/topic.aspx?m=1&c=1&cha=3&sec=9&top=31

 

I would like to put things like this on my graph (Vertex, or X-Intercepts, or the intersection of 2 lines)

I can certainly find this information by using Algebra (vertex form, etc) but it would help my understanding to also visualize the functions graphically.

suppose W1 is weight matrix of graph G1 and W2 is weight matrix of graph G2 (G1 and G2 has same vertices and same edges but with different edge weights)

we want to create graph G3 that has a weight matrix W3. suppose w3[i][j] is an element of W3. we must have :

w3[i][j]=max(w1[i][j],w2[i][j])

w1[i][j] and w2[i][j] are elements of W1 and W2,respectively.

how can we create such graph G3 ?

paths in graph ...

July 11 2014 alpha041 30
Hi i have two questions about paths in graph package: 1. suppose we have: path1=[1,3,5,7,9] path2=[1,2,3,6,7,8,9] if we want to create a graph that it's edges are edges of path1 and edges of path2,how can we do this? edge set of our graph should be {[1,3],[3,5],[5,7],[7,9],[1,2],[2,3],[3,6],[6,7],[7,8],[8,9]} 2. suppose p is an arbitrary path on a given weighted graph G how can i calculate weight of p (that is sum of it's edges weights) in maple ? thanks very much for your help

What is the error here? I can´t find the problem...

Projeto_Reatores_2.mw

C4H10 + 3,5 O2 --> MAN + 4 H2O          (1)

C4H10 + 6,5 O2 --> 4 CO2 + 5 H2O         (2)

MAN + 3O2 --> 4 CO2 + 4 H2O               (3)

 

FBR (FLUIDIZED BED REACTOR)

 

restart

ED1 := diff(F[C4H10](W), W) = r[C4H10];

diff(F[C4H10](W), W) = r[C4H10]

(1)

ED2 := diff(F[O2](W), W) = r[O2];

diff(F[O2](W), W) = r[O2]

(2)

ED3 := diff(F[MAN](W), W) = r[MAN];

diff(F[MAN](W), W) = r[MAN]

(3)

``

Leis de velocidade (fonte [1])

 

r[1] := -k1[0]*exp(-E[1]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2]);

-k1[0]*exp(-E[1]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(4)

r[2] := -k2[0]*exp(-E[2]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2]);

-k2[0]*exp(-E[2]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(5)

r[3] := -k3[0]*exp(-E[3]/(R*T))*C[MAN]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2]);

-k3[0]*exp(-E[3]/(R*T))*C[MAN]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(6)

r[C4H10] := r[1]+r[2];

-k1[0]*exp(-E[1]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])-k2[0]*exp(-E[2]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(7)

r[O2] := 3.5*r[1]+6.5*r[2];

-3.5*k1[0]*exp(-E[1]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])-6.5*k2[0]*exp(-E[2]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(8)

r[MAN] := -(1*1)*r[1]+r[3];

k1[0]*exp(-E[1]/(R*T))*C[C4H10]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])-k3[0]*exp(-E[3]/(R*T))*C[MAN]/(1+K[1]*C[C4H10]/C[O2]+K[2]*C[MAN]/C[O2])

(9)

``

Concentrações

 

``

C[C4H10] := C[0]*F[C4H10](W)/F[total];

C[0]*F[C4H10](W)/F[total]

(10)

C[O2] := C[0]*F[O2](W)/F[total];

C[0]*F[O2](W)/F[total]

(11)

C[MAN] := C[0]*F[MAN](W)/F[total];

C[0]*F[MAN](W)/F[total]

(12)

``

F[total] = F[C4H10](W)+F[O2](W)+F[MAN](W);

F[total] = F[C4H10](W)+F[O2](W)+F[MAN](W)

(13)

Parâmetros (SI) ;

 

k1[0] := 1.96*10^10*10^(-3);

19600000.00

(14)

k2[0] := 3.4*10^11*10^(-3);

340000000.0

(15)

k3[0] := 1.7*10^13*10^(-3);

0.1700000000e11

(16)

E[1] := 125000;

125000

(17)

E[2] := 145000;

145000

(18)

E[3] := 180000;

180000

(19)

K[1] := 59;

59

(20)

K[2] := 26;

26

(21)

T := 398+273;

671

(22)

P := 250000;

250000

(23)

R := 8.314;

8.314

(24)

C[0] := P/(R*T)

44.81335596

(25)

NULL

Condições de operação

 

ED1;

diff(F[C4H10](W), W) = -.2416324343*F[C4H10](W)/(F[total]*(1+59.00000001*F[C4H10](W)/F[O2](W)+26.00000000*F[MAN](W)/F[O2](W)))

 

diff(F[O2](W), W) = -1.081183519*F[C4H10](W)/(F[total]*(1+59.00000001*F[C4H10](W)/F[O2](W)+26.00000000*F[MAN](W)/F[O2](W)))

 

diff(F[MAN](W), W) = .1631424347*F[C4H10](W)/(F[total]*(1+59.00000001*F[C4H10](W)/F[O2](W)+26.00000000*F[MAN](W)/F[O2](W)))-0.7397368946e-2*F[MAN](W)/(F[total]*(1+59.00000001*F[C4H10](W)/F[O2](W)+26.00000000*F[MAN](W)/F[O2](W)))

(26)

F[total](0) := 1000;

1000

(27)

y[C4H10[0]] := 1.77*(1/100);

0.1770000000e-1

(28)

y[O2[0]] := 20.31*(1/100);

.2031000000

(29)

c1 := F[C4H10](0) = F[total](0)*y[C4H10[0]];

F[C4H10](0) = 17.70000000

(30)

c2 := F[O2](0) = F[total](0)*y[O2[0]];

F[O2](0) = 203.1000000

(31)

c3 := F[MAN](0) = 0;

F[MAN](0) = 0

(32)

``

Solução do Sistema de EDO's

 

DEtools[odeadvisor](ED1);

[[_1st_order, _with_linear_symmetries], [_Abel, `2nd type`, `class A`]]

(33)

DEtools[odeadvisor](ED2);

[[_1st_order, _with_linear_symmetries], [_Abel, `2nd type`, `class A`]]

(34)

DEtools[odeadvisor](ED3);

[[_1st_order, _with_linear_symmetries], [_Abel, `2nd type`, `class A`]]

(35)

``

sol := dsolve({ED1, ED2, ED3, c1, c2, c3}, type = numeric, output = listprocedure);

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)

 

[W = proc (W) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](W) else _xout := evalf(W) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [F[total] = `F[total]`]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 1, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..4, {(1) = 17.70000000, (2) = 0., (3) = 203.1000000, (4) = Float(undefined)})), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[4]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([1, table( [( 1, "name" ) = F[total], ( 1, "local" ) = `F[total]`, ( 1, "value" ) = undefined ] )]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 17.70000000, (3) = 0., (4) = 203.1000000}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventenable", "eventdisable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('set')('posint'), ('list')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 1 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 4517142466, (2) = 4517134386, (3) = 4517134482, (4) = 4517134578}), (3) = [W, F[C4H10](W), F[MAN](W), F[O2](W)], (4) = [F[total] = `F[total]`]}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(W, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(W, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(W, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(W, 'string')); if type(_res, 'list') then return _res[1] else return NULL end if elif member(W, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(W, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[1], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(W), 'string') = rhs(W); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 1, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 1, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[1] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[1], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(W), 'string') = rhs(W)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(W) else _ndsol := `tools/gensym`("W"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][1])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(W)))) end if end if; try _res := _solnproc(_xout); _res[1] catch: error  end try end proc, F[C4H10](W) = proc (W) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](W) else _xout := evalf(W) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [F[total] = `F[total]`]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 1, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..4, {(1) = 17.70000000, (2) = 0., (3) = 203.1000000, (4) = Float(undefined)})), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[4]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([1, table( [( 1, "name" ) = F[total], ( 1, "local" ) = `F[total]`, ( 1, "value" ) = undefined ] )]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 17.70000000, (3) = 0., (4) = 203.1000000}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventenable", "eventdisable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('set')('posint'), ('list')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 1 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 4517142466, (2) = 4517134386, (3) = 4517134482, (4) = 4517134578}), (3) = [W, F[C4H10](W), F[MAN](W), F[O2](W)], (4) = [F[total] = `F[total]`]}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(W, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(W, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(W, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(W, 'string')); if type(_res, 'list') then return _res[2] else return NULL end if elif member(W, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(W, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(W), 'string') = rhs(W); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 2, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 2, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[2] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(W), 'string') = rhs(W)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(W) else _ndsol := `tools/gensym`("F[C4H10](W)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][2])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(W)))) end if end if; try _res := _solnproc(_xout); _res[2] catch: error  end try end proc, F[MAN](W) = proc (W) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](W) else _xout := evalf(W) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [F[total] = `F[total]`]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 1, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..4, {(1) = 17.70000000, (2) = 0., (3) = 203.1000000, (4) = Float(undefined)})), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[4]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([1, table( [( 1, "name" ) = F[total], ( 1, "local" ) = `F[total]`, ( 1, "value" ) = undefined ] )]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 17.70000000, (3) = 0., (4) = 203.1000000}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventenable", "eventdisable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('set')('posint'), ('list')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 1 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 4517142466, (2) = 4517134386, (3) = 4517134482, (4) = 4517134578}), (3) = [W, F[C4H10](W), F[MAN](W), F[O2](W)], (4) = [F[total] = `F[total]`]}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(W, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(W, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(W, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(W, 'string')); if type(_res, 'list') then return _res[3] else return NULL end if elif member(W, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(W, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[3], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(W), 'string') = rhs(W); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 3, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 3, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[3] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[3], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(W), 'string') = rhs(W)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(W) else _ndsol := `tools/gensym`("F[MAN](W)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][3])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(W)))) end if end if; try _res := _solnproc(_xout); _res[3] catch: error  end try end proc, F[O2](W) = proc (W) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](W) else _xout := evalf(W) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [F[total] = `F[total]`]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 1, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..4, {(1) = 17.70000000, (2) = 0., (3) = 203.1000000, (4) = Float(undefined)})), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[4]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([1, table( [( 1, "name" ) = F[total], ( 1, "local" ) = `F[total]`, ( 1, "value" ) = undefined ] )]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = F[C4H10](W), Y[2] = F[MAN](W), Y[3] = F[O2](W)]`; YP[1] := -.2416324343*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[2] := .1631424347*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3]))-0.7397368946e-2*Y[2]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); YP[3] := -1.081183519*Y[1]/(Y[4]*(1+59.00000001*Y[1]/Y[3]+26.00000000*Y[2]/Y[3])); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 17.70000000, (3) = 0., (4) = 203.1000000}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventenable", "eventdisable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('set')('posint'), ('list')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 1 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..4, {(1) = 4517142466, (2) = 4517134386, (3) = 4517134482, (4) = 4517134578}), (3) = [W, F[C4H10](W), F[MAN](W), F[O2](W)], (4) = [F[total] = `F[total]`]}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(W, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(W, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(W, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(W, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(W, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(W, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(W), 'string') = rhs(W); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(W), 'string') = rhs(W)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(W) else _ndsol := `tools/gensym`("F[O2](W)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(W)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc]

(36)

with(plots):

odeplot(sol, [[W, F[C4H10](W)], [W, F[O2](W)], [W, F[MAN](W)]], W = 0 .. 1000, legend = [])

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

NULL

NULL

 

 

``

``

 

``

 

Download Projeto_Reatores_2.mw

i have 2 questions:

Question 1. suppose we have generated a random weighted graph with 100 vertices and 2300 edges and found shortest path frome node 1 to node 100 using function ShortestPath(G,1,100). this function returns a path like [1 3 8 2 9 100] but don't get us value of shortest path!

in other words if weights are costs of travelling on edges,we want to find minimum cost of travelling from node 1 to node 100.

how can i find value of shortest path (minimum weight/cost) ?

Question 2. i want to create a sub graph of G by removing the edge that has maximum weight on shortest path found in Question 1. how can i find such edge and how to create such sub graph?

thanks

How to listplot two vectors on the same graph?

That means having two lines.

i am using plot command to plot the first vs the second column in the attached file A.txt

it is giving a strange plot. while plotting the first vs second column in kgraph i am getting the correct plot

why is maple giving me a wrong plot 

you can find the two plots and the raw data file A.txt

Download A.txt

 

Hello everybody, i need to graphic a couple of functions just like this one:

 http://temasmatematicos.uniandes.edu.co/Casquetes_cilindricos/Pags/Anim_1.htm

i have been watching this:

 http://www.maplesoft.com/teachingconcepts/detail.aspx?cid=12 VISUALIZATION --> Animation 2

i've tried with (plots) (plottools) animate, etc. but i can't figure out how to do it. 

It would be very helpful if someone explain me how to do this.

Thank you all!

I thought I could plot this by the graph below but I got an error...WHY is that?

I'm trying to use Rodrigues' Rotation Formula to graph a circle--by rotating a point, naturally--and I'm not sure how to implement that in Maple. For something like a function, allowing a variable--say, x--to vary and produce a curve is natural, but the evalm() function doesn't handle that very well: I can use the formula to *evaluate* the rotations, but not to use them to graph the circle.

I looked for something like solids of revolution--after all, I'm doing something pretty similar--but didn't find anything helpful; apparently there's a way to make solids of revolution, but it's pretty specific and would be difficult to adapt?

How do I plot the graph of 3 functions into one page (that is, as a series). Thank you.

Please this is urgent! I can't seem to be able to upload my job on here.

Thanks.

PieChart in maple...

May 07 2014 ThomasE 10

Hi Everyone, i have question about Piechart.. http://www.mmsonline.com/cdn/cms/Sandvik-pie-chart.jpg

is something like this possible in Maple?

 

Thank you

Hi,

m := Matrix(8, 2, [1, 2, 1, 4, 4,1,4,7,1, 2,4,1,1,4,4,7]);
plot(m)

I would like to add a mame of each point in the graph as: alpha:=(1,2), beta:=(1,4) , gamma:=(4,1),eta:=(4,7)

and the symbol of each point is a bleu sphere.

and how to remove axis borders, tick marks.

Many thinks

 

Hi

I'm using Maple 17 on Windows 8 (64-bit).

I have noticed that when I use the 'spacecurve' command and try to display it with the 'display' command, nothing shows up. I made sure that I used 'with(plots)' and 'with(plottools)', still nothing. However 'plot3d' works fine. I think it has something to do with the version of Java I'm using but I don't know what. Any help is welcome, thx

Specifications of my laptop:

Graphics: NVIDIA Geforce GT 740m

Processor: Intel(R) Core(TM) i7-3630QM (2.40GHz)

Ram: 6,00 GB

OS: Windows 8.1

i solve 4 ODE with boundary condition.. i try to plot a graph F(eta) with different value of M.. but it doesnt comeout.. anyone can help me please??

restart; with*plots; n := .2; B := .5; R := 2; N := 10

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0

(1)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(2)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(3)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(4)

bcs1 := f(0) = R, (D(f))(0) = 1, (D(f))(N) = 0, F(N) = 0, G(N) = -f(N), H(N) = n;

f(0) = 2, (D(f))(0) = 1, (D(f))(10) = 0, F(10) = 0, G(10) = -f(10), H(10) = .2

(5)

L := [2, 3, 5];

[2, 3, 5]

(6)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, bcs1}, M = L[k]), [f(eta), F(eta), G(eta), H(eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YR || k := rhs(R[7]) end do:

odeplot(R, [eta, f(eta)], 0 .. 10);

odeplot([eta = proc (eta) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); _solnproc := _dat[1]; if member(eta, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(eta, `=`) and member(lhs(eta), ["initial", 'initial']) then if type(rhs(eta), 'list') then _res := _solnproc("initial" = [0, op(rhs(eta))]) else _res := _solnproc("initial" = [1, rhs(eta)]) end if; if type(_res, 'list') then return _res[1] end if elif eta = "sysvars" then return _dat[3] end if; eta end proc, f(eta) = proc (eta) local res, data, solnproc, `f(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `f(eta)` := pointto(data[2][2]); return ('`f(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, diff(f(eta), eta) = proc (eta) local res, data, solnproc, `diff(f(eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(f(eta),eta)` := pointto(data[2][3]); return ('`diff(f(eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, diff(diff(f(eta), eta), eta) = proc (eta) local res, data, solnproc, `diff(diff(f(eta),eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(diff(f(eta),eta),eta)` := pointto(data[2][4]); return ('`diff(diff(f(eta),eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, F(eta) = proc (eta) local res, data, solnproc, `F(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `F(eta)` := pointto(data[2][5]); return ('`F(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc, G(eta) = proc (eta) local res, data, solnproc, `G(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `G(eta)` := pointto(data[2][6]); return ('`G(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[6] catch: error  end try end proc, H(eta) = proc (eta) local res, data, solnproc, `H(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `H(eta)` := pointto(data[2][7]); return ('`H(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[7] catch: error  end try end proc], [eta, f(eta)], 0 .. 10)

(7)

``

(8)

print([(Y || (1 .. 3))(0)]);

[HFloat(0.0662575289978352), HFloat(0.06239249313847126), HFloat(0.05664455547330386)]

(9)

print([(YP || (1 .. 3))(0)]);

[HFloat(-2.308757932969589), HFloat(-2.2878028202715557), HFloat(-2.2574484928181637)]

(10)

print([(YR || (1 .. 3))(0)]);

[HFloat(0.20000866382583435), HFloat(0.20000675928400788), HFloat(0.2000045400222304)]

(11)

odeplots([Y || (1 .. 1)], 0 .. 10, labels = [eta, F(eta)]):

``


Download hydro92.mw

1 2 3 4 5 6 7 Last Page 1 of 46