follow Computing non-commutative Groebner bases and Groebner bases for modules

in maple 12

Error, (in Groebner:-Basis) the first argument must be a list or set of polynomials or a PolynomialIdeal

then i find in maple 15 help file is changed from module M := [seq(Vector(subsop(i+1 = 1, [F[i], 0, 0, 0])), i = 1 .. 3)]

to array M := [seq( s^3*F[i] + s^(3-i), i=1..3)];

though it can run, but when apply other example can not run

such as

restart;

with(Groebner):

F := [x+y+z, x*y+y*z+z*x, x*y*z-1];

M := [seq( s^3*F[i] + s^(3-i), i=1..3)];

M := [[x*y,y,x],[x^2+x,y+x^2,y],[-y,x,y],[x^2,x,y]];

with(Ore_algebra);

A := poly_algebra(x,y,z,s);

T := MonomialOrder(A, lexdeg([s], [x,y,z]), {s});

G := Groebner[Basis](M, T);

Error, (in Groebner:-Basis) the first argument must be a list or set of polynomials or a PolynomialIdeal

G1 := select(proc(a) evalb(degree(a,s)=3) end proc, G);

[seq(Vector([seq(coeff(j,s,3-i), i=0..3)]), j=G1)];

C := Matrix([seq([seq(coeff(j,s,3-i), i=1..3)], j=G1)]);

GB := map(expand, convert(C.Vector(F), list));

Groebner[Basis](F, tdeg(x,y,z));