## How to print infinity symbol at top of a circle...

infinity symbol looks like an  "8" lying down.

How to use Maple to plot  the  infinity( lay flat  "8") symbol at 12 o'clock position of a circle

## Discordance of outputs of two limit commands

Maple
```limit((x^2-1)*sin(1/(x-1)), x = infinity, complex);
infinity-infinity*I
MultiSeries:-limit((x^2-1)*sin(1/(x-1)), x = infinity, complex);
infinity```

whereas the same outputs are expected. The help http://www.maplesoft.com/support/help/Maple/view.aspx?path=infinity&term=infinity does not shed light on the problem. Here are few pearls:

• infinity is used to denote a mathematical infinity, and hence it is usually used as a symbol by itself or as -infinity.
• The quantities infinity, -infinity, infinity*I, -infinity*I, infinity + y*I, -infinity + y*I, x + infinity*I and x - infinity*I, where x and y are finite, are all considered to be distinct in Maple. However, all 2-component complex numerics in which both components are infinity are considered to be the same (representing the single point at the "north pole" of the Riemann sphere).
• The type cx_infinity can be used to recognize this "north pole" infinity.

## Solution to BVP , pls help...

Am trying to valid a research work done by kuiken(1968)

Kuiken_(1968).pdf

where we have this two eauations:

restart;
Digits := 35;
with(ODETools);
with(student);
with(plots);
inf := 4;
equ1 := diff(f[0](eta), `\$`(eta, 3))+theta[0](eta);
equ2 := diff(theta[0](eta), `\$`(eta, 2))+3*f[0](eta)*(diff(theta[0](eta), eta));
Bcs1 := f[0](0) = 0, (D(f[0]))(0) = 0, theta[0](0) = 1, theta[0](inf) = 0, (D(D(f[0])))(inf) = 0;
S1 := dsolve({Bcs1, equ1, equ2}, {f[0](eta), theta[0](eta)}, type = numeric, method = bvp[midrich]);
proc(x_bvp)  ...  end;
S1(0);
[                            d
[eta = 0., f[0](eta) = 0., ----- f[0](eta) = 0.,
[                           deta

d   /  d            \
----- |----- f[0](eta)| = 0.82449782146165697398999365896678734,
deta \ deta          /

theta[0](eta) = 1.0000000000000000000000000000000000,

d                                                         ]
----- theta[0](eta) = -0.71098574970825563256340736114251047]
deta                                                       ]
S1(inf);
[
[eta = 4., f[0](eta) = 1.7815670728545914261072119522795076,
[

d
----- f[0](eta) = 0.51061876174095320088291844433043562,
deta

d   /  d            \
----- |----- f[0](eta)| = 0., theta[0](eta) = 0.,
deta \ deta          /

d
----- theta[0](eta) = -0.000054818176138173095945902421930470836
deta

]
]
]

Pls, I need to find the function of the limit of f[0](eta) at eta tend to infinity. checked equation 45 of the attached document and for the two equation pls checked equation 36 and 37 for the ODE equation solved above.

Kuiken_solution for equation 36 and 37.pdf

## Apparent bug regarding sum of floors...

I have encountered a behavior of Maple that I find hard to explain and I am hoping for help. The command

sum(floor((exp(Pi)-Pi)*n)/3^n,n=0..infinity);

was meant to be an example of "High-precision fraud" as in the 1992 paper of Borwein and Borwein, and indeed it gives 29/2 to within 531 digits. But I am unable to make Maple see this; indeed I get with evalf(%,1000)

14.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

I find it hard to guess why Maple gets this wrong, actually. The point of the example is that floor((exp(Pi)-Pi)*n)=20*n-1 for many n, but Maple has no problems finding the first failure at n=1112. It must hence be trying something more advanced than just adding up all summands until the tail sum is small enough to satisfy the precision? I guess an alternative approach would indeed be possible since what is being "floored" is relatively simple, but then that seems to be buggy?

Would be very grateful for any assistance!

Best,

Soren Eilers

## How to integrate this function?...

How integrate this function

 >
 (1)
 >

Thank you for helpping

## Infinite value for parameter......

hi.how i can allocate infinite value for a parameter such as N ,which is attached below ( N := infinite) .i encounter with error.please see it and help

thanks..

 (1)

infinite.mw

## How to obtain the Maclaurin series of a function?...

I want to obtain the taylor series of a function say sin(x) at x=0 up to infinity. I mean that I don't want a trauncated series. I tried using "series" and "taylor" but they just give the truncated series.

## Problem with involution...

Hi everyone,

Consider this maple 18 doc: Euler18.mw

The code is regular code for Julia sets of the exponential.

To see how the Julia set behaves at infinity, I apply the transform mu(z)=1/z.

The plot3d command correctly plots the Julia set at an appropriate neighborhood of infinity, but:

1) Axes are not transformed

2) Saving as .eps produces an empty plot, sans the axes (plot is saved correctly, when not applying mu(z))

Is there any trick to force the axes to also show correctly with the transformed ranges?

Seems that this misalignment is bothering the .eps renderer, which probably plots the graph in twilight zone, given the false ranges of the untransformed axes.

Any ideas on how to force the saveas .eps to work in this case?

Many thanks,

Yiannis

## BesselJ evaluation problem

by: Maple 2015

Apparently inconsistent behaviour of the BesselJ() function.

Examples: BesselJ(-3, 0)  ... gives 0 (correct)

but BesselJ(-3.0, 0), BesselJ(-3, 0.0)  and BesselJ(-3, 0.0) all give Float(infinity) (wrong! - should be 0.0)

The problem seems to occur for all negative integer values of the first argument (the order) when the second argument is 0 or 0.0.

## What is that limit?...

The following integral
f := u-> int(-1/(x*sqrt(-1+u^2*(x+1)^2*x^2)), x = (1/2)*(-u-sqrt(u^2-4*u))/u .. (1/2)*(-u+sqrt(u^2-4*u))/u);
plot on RealRange(4,infinity), limit(f(u),u=4,right), limit(f(u),u=infinity).
Unfortunately, I lost a file. As far as I remember it, I have had a problem with
the last-named one only:

limit(f(u), u = infinity);

MultiSeries:-limit(f(u), u = infinity);

asympt(f(u), u, 2);

Error, (in asympt) unable to compute series

Hope my colleagues will make progress with it. The assumed value is Pi/2.

## How to find this integral?...

here a is constant.

## evaluating the following limit ...

I'm trying to determine that f(x) = (a/2)*e^(-a|x|) is a pdf for which I have tried to calcuate the integral from -infinity to +infinity but I am no getting a result that converges(even the wolfram alpha widget said the integral doesn't converge). How do I correcly implement this?

## Differential Transforms Method...

hello everyone. I have an undergradute project i'm currently working on and I'm stuck where I have to use the Differential Transforms Method to solve a problem with boundary conditions at infinity

restart;

Digits := 5;

F[0] := 0; F[1] := 0; F[2] := (1/2)*A; T[0] := 1; T[1] := B; M := 2; S := 1;

for k from 0 to 10 do F[k+3] := (2*(sum((r+1)*F[r+1]*(k+1-r)*F[k+1-r], r = 0 .. k))-T[k]-3*(sum((k+1-r)*(k+2-r)*F[r]*F[k+2-r], r = 0 .. k))-M*(k+1)*F[k+1])*factorial(k)/factorial(k+3);

T[k+2] := (-3*(sum((k+1-r)*F[r]*T[k+1-r], r = 0 .. k))-S*T[k])*factorial(k)/factorial(k+2)

end do; f := 0; t := 0;

for k from 0 to 10 do

f := f+F[k]*x^k;

t := t+T[k]*x^k end do;

print(f);
print(t);

but the problem is that i cant seem to evaluate

or higer diagonal pade-approximant. any help will be greatly appreciated. thank you.

## Asymptotic behaviour...

How to find asymptotic behaviour of a function.

For example at infinity

sinh(x) behaves as 1/2*exp(x)

1/sinh(x)  behaves as 2*exp(-x)

exp(-x)*(exp(-x)+1) behaves as exp(-x)

so that it works with a more complex expression.

## Second order ODE with infinity condition...

I got a problem with solving a second order ODE.

The ODE is :

-V(xi)+(1/2)*xi*(diff(V(xi), xi))+(1/4)*(diff(V(xi), xi, xi))=-(1/2)*k2*(diff(H(xi), xi))-k1*n*X/E+1+k2

where k1,k2,n,X,E  all are constant.

the condition is :

V(xi) tends to 2*xi^2 as xi tends to infinity.

I used 'dsolve' to solve the equation firstly, and got a solution with two constant C1 and C2, I want to use the condition to elimilate C2, so I used limit(sol,xi=infinity)=2*xi^2. But when I used the command 'limit', I can't get the answer.

Could any one help me?

Many thanks!!!

 1 2 3 4 5 6 7 Last Page 1 of 22
﻿