Items tagged with maple maple Tagged Items Feed

Hi guys. I am new to the Maple environment.

Was trying to do some GR calculations when the following problem arose.

restart; with(Physics);
Setup(coordinates = (X = [t, r, theta, phi]), metric = -A(r)^2*(dt^2)+B(r)^2*(dr^2)+r^2*(dtheta^2)+r^2*(sin(theta)^2)*(dphi^2));
Setup(math = true);
g_[line_element]; g_[];
Christoffel[nonzero]; Christoffel[`~mu`, alpha, beta, nonzero];
D_[mu](g_[`~alpha`, `~beta`]);
expand(D_[2](g_[`~2`, `~beta`]));
D_[2](g_[`~2`, `~2`]);

The output for the last 3 lines are:

1. 0

2. Expansion in terms of Christoffel symbols (which does equal zero on substituting various values)

3. Non-zero value.

Obviously the answer must be zero for all cases (covariant derivative of metric). So what have I missed/misunderstood here?

Regards

BuddT

I know that whattype() is used to find the basic data type of an expression. Unfortunately that information is rarely useful. How can I dig down deeper and get Maple to tell me more about the expression?

I read somewhere that there is a properties() procedure that does that but I cannot find that procedure.

Thanks.

Can Maple 17.0 work on Windows 10 Home Edition? or it can be only Windows 10 Pro Edition

I have a simple algebraic problem, but Maple can't eliminate the exp(3P) in each term. Please help.

I get the following error:

Error, (in solve) cannot solve for an unknown function with other operations in its arguments


restart

R13eqn := -2*H*Ybar3*Zbar-H*Z1-H1*Z+H1*Zbar+H4*Ybar3-H41 = 0

-2*H*Ybar3*Zbar-H*Z1-H1*Z+H1*Zbar+H4*Ybar3-H41 = 0

(1)

H := exp(3*P)*(Z+Zbar)

exp(3*P)*(Z+Zbar)

(2)

H1 := 3*P1*exp(3*P)*(Z+Zbar)+exp(3*P)*(Z1+Zbar1)

3*P1*exp(3*P)*(Z+Zbar)+exp(3*P)*(Z1+Zbar1)

(3)

H4 := H*(Z4+Zbar4)/(Z+Zbar)

exp(3*P)*(Z4+Zbar4)

(4)

H41 := ((H1*(Z4+Zbar4)+H*(Z41+Zbar41))(Z+Zbar)-H*(Z4+Zbar4)(Z1+Zbar1))/(Z+Zbar)^2

((3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*(Z(Z+Zbar)+Zbar(Z+Zbar))+(exp(3*P))(Z+Zbar)*(Z1(Z+Zbar)+Zbar1(Z+Zbar)))*(Z4(Z+Zbar)+Zbar4(Z+Zbar))+(exp(3*P))(Z+Zbar)*(Z(Z+Zbar)+Zbar(Z+Zbar))*(Z41(Z+Zbar)+Zbar41(Z+Zbar))-exp(3*P)*(Z+Zbar)*(Z4(Z1+Zbar1)+Zbar4(Z1+Zbar1)))/(Z+Zbar)^2

(5)

simplify(R13eqn)

(((-3*Z(Z+Zbar)*P1(Z+Zbar)-3*P1(Z+Zbar)*Zbar(Z+Zbar)-Z1(Z+Zbar)-Zbar1(Z+Zbar))*Zbar4(Z+Zbar)+(-3*P1(Z+Zbar)*Z4(Z+Zbar)-Z41(Z+Zbar)-Zbar41(Z+Zbar))*Zbar(Z+Zbar)-3*P1(Z+Zbar)*Z(Z+Zbar)*Z4(Z+Zbar)+(-Z1(Z+Zbar)-Zbar1(Z+Zbar))*Z4(Z+Zbar)-Z(Z+Zbar)*(Z41(Z+Zbar)+Zbar41(Z+Zbar)))*(exp(3*P))(Z+Zbar)+exp(3*P)*(Z+Zbar)*(Zbar4(Z1+Zbar1)+Z4(Z1+Zbar1)+(3*P1-2*Ybar3)*Zbar^3+((3*P1-4*Ybar3)*Z+Zbar1)*Zbar^2+((-3*P1-2*Ybar3)*Z^2-2*Z1*Z+(Z4+Zbar4)*Ybar3)*Zbar-3*P1*Z^3+(-2*Z1-Zbar1)*Z^2+(Z4+Zbar4)*Ybar3*Z))/(Z+Zbar)^2 = 0

(6)

Zbar41 := -2*Zbar*Zbar1

-2*Zbar*Zbar1

(7)

Z41 := -2*Z1*Z

-2*Z1*Z``

(8)

Z4 := -Z^2

-Z^2

(9)

Zbar4 := -Zbar^2

-Zbar^2

(10)

simplify(R13eqn)

((3*P1(Z+Zbar)*Zbar(Z+Zbar)^3+(3*Z(Z+Zbar)*P1(Z+Zbar)+Z1(Z+Zbar)+3*Zbar1(Z+Zbar))*Zbar(Z+Zbar)^2+3*(Z(Z+Zbar)*P1(Z+Zbar)+(2/3)*Z1(Z+Zbar)+(2/3)*Zbar1(Z+Zbar))*Z(Z+Zbar)*Zbar(Z+Zbar)+3*(Z(Z+Zbar)*P1(Z+Zbar)+Z1(Z+Zbar)+(1/3)*Zbar1(Z+Zbar))*Z(Z+Zbar)^2)*(exp(3*P))(Z+Zbar)-exp(3*P)*(Z+Zbar)*(Zbar(Z1+Zbar1)^2+Z(Z1+Zbar1)^2+3*(Z+Zbar)*((P1+(1/3)*Ybar3)*Z^2+((2/3)*Zbar*Ybar3+(2/3)*Z1+(1/3)*Zbar1)*Z-Zbar*((P1-Ybar3)*Zbar+(1/3)*Zbar1))))/(Z+Zbar)^2 = 0

(11)

expand(((3*P1(Z+Zbar)*Zbar(Z+Zbar)^3+(3*Z(Z+Zbar)*P1(Z+Zbar)+Z1(Z+Zbar)+3*Zbar1(Z+Zbar))*Zbar(Z+Zbar)^2+3*(Z(Z+Zbar)*P1(Z+Zbar)+(2/3)*Z1(Z+Zbar)+(2/3)*Zbar1(Z+Zbar))*Z(Z+Zbar)*Zbar(Z+Zbar)+3*(Z(Z+Zbar)*P1(Z+Zbar)+Z1(Z+Zbar)+(1/3)*Zbar1(Z+Zbar))*Z(Z+Zbar)^2)*(exp(3*P))(Z+Zbar)-exp(3*P)*(Z+Zbar)*(Zbar(Z1+Zbar1)^2+Z(Z1+Zbar1)^2+3*(Z+Zbar)*((P1+(1/3)*Ybar3)*Z^2+((2/3)*Zbar*Ybar3+(2/3)*Z1+(1/3)*Zbar1)*Z-Zbar*((P1-Ybar3)*Zbar+(1/3)*Zbar1))))/(Z+Zbar)^2 = 0)

-3*(exp(P))^3*Ybar3*Zbar^4/(Z+Zbar)^2-2*(exp(P))^3*Z^3*Z1/(Z+Zbar)^2-3*(exp(P))^3*P1*Z^4/(Z+Zbar)^2-(exp(P))^3*Z^3*Zbar1/(Z+Zbar)^2+3*(exp(P))^3*P1*Zbar^4/(Z+Zbar)^2+(exp(P))^3*Zbar^3*Zbar1/(Z+Zbar)^2-(exp(P))^3*Z*Zbar(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Z*Z(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Z^4*Ybar3/(Z+Zbar)^2-(exp(P))^3*Zbar*Zbar(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Zbar*Z(Z1+Zbar1)^2/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^3/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^3/(Z+Zbar)^2+3*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Z1(Z+Zbar)/(Z+Zbar)^2+(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Zbar1(Z+Zbar)/(Z+Zbar)^2+(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^2*Z1(Z+Zbar)/(Z+Zbar)^2+3*(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^2*Zbar1(Z+Zbar)/(Z+Zbar)^2-4*(exp(P))^3*Ybar3*Z^3*Zbar/(Z+Zbar)^2-8*(exp(P))^3*Ybar3*Z^2*Zbar^2/(Z+Zbar)^2-8*(exp(P))^3*Ybar3*Z*Zbar^3/(Z+Zbar)^2-4*(exp(P))^3*Z^2*Z1*Zbar/(Z+Zbar)^2-2*(exp(P))^3*Z*Z1*Zbar^2/(Z+Zbar)^2-6*(exp(P))^3*P1*Z^3*Zbar/(Z+Zbar)^2+6*(exp(P))^3*P1*Z*Zbar^3/(Z+Zbar)^2-(exp(P))^3*Z^2*Zbar*Zbar1/(Z+Zbar)^2+(exp(P))^3*Z*Zbar^2*Zbar1/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Zbar(Z+Zbar)/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)^2/(Z+Zbar)^2+2*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)*Z1(Z+Zbar)/(Z+Zbar)^2+2*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)*Zbar1(Z+Zbar)/(Z+Zbar)^2 = 0

(12)

solve(-(exp(P))^3*Z^2*Zbar*Zbar1/(Z+Zbar)^2+(exp(P))^3*Z*Zbar^2*Zbar1/(Z+Zbar)^2-4*(exp(P))^3*Ybar3*Z^3*Zbar/(Z+Zbar)^2-8*(exp(P))^3*Ybar3*Z^2*Zbar^2/(Z+Zbar)^2-8*(exp(P))^3*Ybar3*Z*Zbar^3/(Z+Zbar)^2-4*(exp(P))^3*Z^2*Z1*Zbar/(Z+Zbar)^2-2*(exp(P))^3*Z*Z1*Zbar^2/(Z+Zbar)^2-6*(exp(P))^3*P1*Z^3*Zbar/(Z+Zbar)^2+6*(exp(P))^3*P1*Z*Zbar^3/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Zbar(Z+Zbar)/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)^2/(Z+Zbar)^2+2*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)*Z1(Z+Zbar)/(Z+Zbar)^2+2*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)*Zbar(Z+Zbar)*Zbar1(Z+Zbar)/(Z+Zbar)^2-(exp(P))^3*Z^3*Zbar1/(Z+Zbar)^2+(exp(P))^3*Zbar^3*Zbar1/(Z+Zbar)^2-(exp(P))^3*Z*Zbar(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Z*Z(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Z^4*Ybar3/(Z+Zbar)^2-(exp(P))^3*Zbar*Zbar(Z1+Zbar1)^2/(Z+Zbar)^2-(exp(P))^3*Zbar*Z(Z1+Zbar1)^2/(Z+Zbar)^2+(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Zbar1(Z+Zbar)/(Z+Zbar)^2+(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^2*Z1(Z+Zbar)/(Z+Zbar)^2-3*(exp(P))^3*Ybar3*Zbar^4/(Z+Zbar)^2-2*(exp(P))^3*Z^3*Z1/(Z+Zbar)^2-3*(exp(P))^3*P1*Z^4/(Z+Zbar)^2+3*(exp(P))^3*P1*Zbar^4/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^3/(Z+Zbar)^2+3*P1(Z+Zbar)*(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^3/(Z+Zbar)^2+3*(exp(3*P))(Z+Zbar)*Z(Z+Zbar)^2*Z1(Z+Zbar)/(Z+Zbar)^2+3*(exp(3*P))(Z+Zbar)*Zbar(Z+Zbar)^2*Zbar1(Z+Zbar)/(Z+Zbar)^2 = 0, P1)

Error, (in solve) cannot solve for an unknown function with other operations in its arguments

 

NULL

``


Download Help_Maple_divide_an_Exp_on_both_sides.mwHelp_Maple_divide_an_Exp_on_both_sides.mw

Hello, I run Maple to solve Binary Integer Programming problem which contain about 1340 constraint and its goal to maximize the objective function.

At first, it's running for 2 hours and said that the iteration limit was reached. So I try to add 'iterationlimit' at LPSolve opts and set it to 10000, but after 3 or 4 hours it said that the iteration limit was reached. So I set 'iterationlimit' to 100000000 and now Maple keep evaluating more than 12 hours.

I run Maple at my notebook with these spesification:

Processor: Intel Corei3-5005U 2.0 GHz

Memory: 4GB RAM

Windows 10

 

It is normal? Or I must run Maple in higher notebook spesification?

Thank you in advance.

 

Below is my Maple file, hope you can help me.

ISL_2017_FASE3.mw

Hi
I want to solve this integration simbolic:


I use this cammand :

But Maple return this:

Would you Please Help me , thanks

I have been in touch with Maplesoft trying to get this version for windows (they are not able to create a download for this). I have codes that used to run in Maple 6 but not in Maple 7 or later. (Maple V should work as well).

If you any of have this version, please let me know if I can try it out for a limited time (I have always had licenses from Maple V Release 3 or 4).

I am not able to post those codes for obvious confidentiality reasons.

 

Thanks

 

(I tried my code in Maple 7, but no use). 


 Hello,every one,i want to solve system of equations but i recieve an error ,how can i find the coeffecients c1,c2,c3,c4?thank.

``

restart

``

``

A := 45*x*c4+72*c3 = 0:

 

B := 56*c2*c4+28*c3^2 = 0:

C := M^2*(-x^5*c4-x^4*c3-x^3*c2-x^2*c1+c1+c2+c3+c4+1)^n*c4+42*beta*c1*c4+42*beta*c2*c3 = 0:

E := M^2*(-x^5*c4-x^4*c3-x^3*c2-x^2*c1+c1+c2+c3+c4+1)^n*c3+30*beta*c1*c3+15*beta*c2 = 0:

F := M^2*(-x^5*c4-x^4*c3-x^3*c2-x^2*c1+c1+c2+c3+c4+1)^n*c2+20*beta*c1*c2-20*beta*c1*c4-20*beta*c2*c4-20*beta*c3*c4-20*beta*c4^2-20*beta*c4-20*c4 = 0:

G := M^2*(-x^5*c4-x^4*c3-x^3*c2-x^2*c1+c1+c2+c3+c4+1)^n*c1+6*beta*c1^2-12*beta*c1*c3-12*beta*c2*c3-12*beta*c3^2-12*beta*c3*c4-12*beta*c3-12*c3 = 0:

``

beta*c1+beta*c2^2+beta*c2*c3+beta*c2*c4+beta*c2+c2 = 0:

M^2*(-x^5*c4-x^4*c3-x^3*c2-x^2*c1+c1+c2+c3+c4+1)^n = 0:

with(SolveTools):

``

PolynomialSystem({{45*c4*x+72*c3 = 0}, {30*beta*c1*c3+15*beta*c2 = 0}, {42*beta*c1*c4+42*beta*c2*c3 = 0}, {20*beta*c1*c2-20*beta*c1*c4-20*beta*c2*c4-20*beta*c3*c4-20*beta*c4^2-20*beta*c4-20*c4 = 0}, {6*beta*c1^2-12*beta*c1*c3-12*beta*c2*c3-12*beta*c3^2-12*beta*c3*c4-12*beta*c3-12*c3 = 0}}, {c1, c2, c3, c4}, {beta = 2, x = 1/5})

Error, invalid input: too many and/or wrong type of arguments passed to SolveTools:-PolynomialSystem; first unused argument is {beta = 2, x = 1/5}

 

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

``

``

``

 

Download Numerical.mw

HI.please help me for solve differenrtial equation with finite difference method not dsolve numeric solver in maple

thanks

FDM2.mw

L := 1/50000000; -1; eta := 1; -1; PDE[111] := 7.65692307692309*10^(-8)*(diff(f1(x), x, x, x, x))-1.56784615384616*10^12*(diff(f1(x), x, x))+220.592307692308*(diff(f2(x), x, x, x))-3.52947692307693*10^21*(diff(f2(x), x))+43.7538461538462*(diff(f3(x), x, x, x))+4.81292307692309*10^20*(diff(f3(x), x))+6.50473846153848*10^30*f1(x)-7.90000000000000*10^(-8)*eta*f1(x)

0.7656923077e-7*(diff(diff(diff(diff(f1(x), x), x), x), x))-0.1567846154e13*(diff(diff(f1(x), x), x))+220.592307692308*(diff(diff(diff(f2(x), x), x), x))-0.3529476923e22*(diff(f2(x), x))+43.7538461538462*(diff(diff(diff(f3(x), x), x), x))+0.4812923077e21*(diff(f3(x), x))+0.6504738462e31*f1(x)

(1)

PDE[222] := 2.14211538461539*10^(-8)*(diff(f2(x), x, x, x, x))-1.64988461538462*10^12*(diff(f2(x), x, x))+7.90486153846156*10^30*f2(x)-220.592307692308*(diff(f1(x), x, x, x))+3.52947692307693*10^21*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f3(x), x, x))+5.13378461538463*10^30*f3(x)-7.90000000000000*10^(-8)*eta*f2(x)

0.2142115385e-7*(diff(diff(diff(diff(f2(x), x), x), x), x))-0.1649884615e13*(diff(diff(f2(x), x), x))+0.7904861538e31*f2(x)-220.592307692308*(diff(diff(diff(f1(x), x), x), x))+0.3529476923e22*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f3(x), x), x))+0.5133784615e31*f3(x)

(2)

PDE[333] := -6.38076923076924*10^(-31)*(diff(f3(x), x, x, x, x, x, x))+9.66537046153848*10^(-8)*(diff(f3(x), x, x, x, x))-3.10154753538461*10^12*(diff(f3(x), x, x))-43.7538461538462*(diff(f1(x), x, x, x))-4.81292307692309*10^20*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f2(x), x, x))+5.13378461538463*10^30*f2(x)+2.29989058707693*10^31*f3(x)-7.90105333333333*10^(-8)*omega^2*f3(x)+6.58333333333333*10^(-31)*eta*(diff(f3(x), x, x))

-0.6380769231e-30*(diff(diff(diff(diff(diff(diff(f3(x), x), x), x), x), x), x))+0.9665370462e-7*(diff(diff(diff(diff(f3(x), x), x), x), x))-0.3101547535e13*(diff(diff(f3(x), x), x))-43.7538461538462*(diff(diff(diff(f1(x), x), x), x))-0.4812923077e21*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f2(x), x), x))+0.5133784615e31*f2(x)+0.2299890587e32*f3(x)-0.7901053333e-7*omega^2*f3(x)

(3)

bcs := {f1(0) = 0, f1(L) = 0, f2(0) = 0, f2(L) = 0, f3(0) = 0, f3(L) = 0, ((D@@1)(f1))(0) = 0, ((D@@1)(f1))(L) = 0, ((D@@1)(f2))(0) = 0, ((D@@1)(f2))(L) = 0, ((D@@1)(f3))(0) = 0, ((D@@1)(f3))(L) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(L) = 0}

{f1(0) = 0, f1(1/50000000) = 0, f2(0) = 0, f2(1/50000000) = 0, f3(0) = 0, f3(1/50000000) = 0, (D(f1))(0) = 0, (D(f1))(1/50000000) = 0, (D(f2))(0) = 0, (D(f2))(1/50000000) = 0, (D(f3))(0) = 0, (D(f3))(1/50000000) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(1/50000000) = 0}

(4)

``


Download FDM2.mw

Hi,

I have attached a Maple file. My problem is that the solve for the simultaneous equation does not give me understandable results. I even simplified my equations by saying some parameters are zero although my final goal is to find an expression for a and varphi. Any idea how to solve this analytically? I know how to do it numerically. I need an analytical expression.

Thanks,

Baharm31

 

I have Maple output that extends page width. I can of course see the entire output when I scroll to the right. But since I want to make a screenshot of the output, I need to have the output on one page. Is there a possibility to have the output printed on one page, not extending page width?

Any comments would be greatly appreciated!

 

i got this error in window 8 in surface 2  then follow this post and install again still error

https://www.maplesoft.com/support/faqs/detail.aspx?sid=139020

then follow

http://www.maplesoft.com/support/faqs/detail.aspx?sid=32607

then follow and install again same error

http://www.maplesoft.com/support/faqs/detail.aspx?sid=32631

and install again same eror

then i add option -f c:\Program File (x86)\MapleXX in cmd and then no error any more 

but no install succeed 

where it go, it still not install

then i try again, there is no room enough to install,  hard disk do not have enough space, then i go to c:\Windows\Temp, after deleted file in it, still not enough space

 

i find 

https://www.maplesoft.com/support/install/maple15_install.html

but template do not state how to activate later

how to write this template and how to clear the temp file created by previous failed cmd install method

hi everyone..i would like to ask,why do we need to type in (101-100λ) in our maple program..why do we need the continuation..thanks in advance for answering..

I'm currently working on building a Grid Layout for a project, and I'm having trouble coding in the RunWindow and GetFile elements into buttons under the grid layout. I've gone through the overviews and examples for them, but had no luck. I'm using Maple 2016.1 for OS X.

Additionally, the structure of the code is slightly different as to how many of the example worksheets structure their Grid Layout code, since the code originated from a Maplet Builder file. I.e. in the example worksheets they would follow as:

maplet := Maplet('onstartup' = 'Action1', 'reference' = 'Maplet1',
         BoxLayout('background' = "#D6D3CE", 'border' = 'false', 'halign' = 'center', 'inset' = '5', 'reference' = 'BoxLayout1', 'valign' = 'center', 'vertical' = 'false', 'visible' = 'true',
                       BoxColumn( BoxCell('hscroll' = 'never', 'value' = 'Button1', 'vscroll' = 'never'),
         GridLayout('background' = "#D6D3CE", 'border' = 'false','halign'='center','inset'='5', 'reference' = 'GridLayout1', 'valign' = 'center', 'visible' = 'true',
                   GridRow('valign' = 'top', GridCell('height' = '1', 'hscroll' = 'never', 'value' = 'BoxLayout1', 'vscroll' = 'never', 'width' = '1' ))),
         Window('layout'= 'GridLayout1', 'reference' = 'W1', 'resizable' = 'true', 'title' = "Maplet"),
          Action('reference' = 'Action1', RunWindow('window'= 'W1'))

However the structure for the code I am working with has action at the very start of the code, follwed by the the code for the buttons then layouts/window.  E.g. (the code has been shortened)

with (Maplets[Elements]):
maplet :=
Maplet('onstartup'='Action1','reference'='Maplet1',
Action('reference'='clickButton1'),
Action('reference'='clickButton9',
Evaluate('function'='plot3d(x^2*cos(y),x = -1 .. 1,y = -2*Pi .. 2*Pi)','target'='Plotter1','waitforresult'='true')),
Action('reference'='clickButton11'),
Action('reference'='clickButton12'),
Action('reference'='clickButton10'),
Button('background'="#D6D3CE",'caption'="Insert Molecular Geometry",'enabled'='true','foreground'="#000000",'onclick'='clickButton1','reference'='Button1','visible'='true'),

....

BoxLayout('background'="#D6D3CE",'border'='false','halign'='center','inset'='5','reference'='BoxLayout1','valign'='center','vertical'='false','visible'='true',
BoxColumn(
BoxCell('hscroll'='never','value'='Button1','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout2','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout3','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout9','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout14','vscroll'='never')),
BoxColumn(
BoxCell('hscroll'='never','value'='Label3','vscroll'='never'),
BoxCell('hscroll'='never','value'='Plotter1','vscroll'='never'),
BoxCell('hscroll'='never','value'='Slider1','vscroll'='never'))),
GridLayout('background'="#D6D3CE",'border'='false','halign'='center','inset'='5','reference'='GridLayout1','valign'='center','visible'='true',
GridRow('valign'='top',
GridCell('height'='1','hscroll'='never','value'='BoxLayout1','vscroll'='never','width'='1'))),
Window('layout'='GridLayout1','reference'='Window1','resizable'='true','title'="Maplet"),
Action('reference'='Action1',
RunWindow('window'='Window1'))):

Maplets[Display](maplet);

 

If anyone would be able to provide an example of code or some guidance I could follow that would be greatly appreciated! 

Hi

 

I want to write the functional Z of J Z = exp(Int(Int(J(x)*Delta(x-y)*J(y), x), y))with Delta(x) = Int(I*exp(-I*k*x)*(1/(k^2-m^2)), k) in terms of the fourier transform of J: J(x) = Int(J(p)*exp(-I*p*x), p).

Actually I'm in Minkowski space and all the integrals should be over 4 dimensions, x,y,k,p should all be four-vectors, but I wanted to keep things short. (The only way I have found to express a 4D integral is using Physics-Intc with the singleparameters of the four vector. Is there a more convenient way to get d^4x?) But still in 1D I cannot solve it.

To find the solution, an exponential of only one integral, is actually pretty easy, since there are integrals over e. g. exp(-I*x*(p-k)) deliver a delta distribution, but I cannot reproduce this in Maple since he doesn't perform the integral over x.

I have found that I can/have to use the command inttrans-fourier to gain the delta distribution, but when I try to use it for the problem mentioned above I run into all kinds of problems. Not to mention that I cannot manage to perform a fourier transformation in 4D.

Does anybody know how to solve this problem? Thanks!

1 2 3 4 5 6 7 Last Page 1 of 272