Items tagged with maple

HI.please help me for solve differenrtial equation with finite difference method not dsolve numeric solver in maple


L := 1/50000000; -1; eta := 1; -1; PDE[111] := 7.65692307692309*10^(-8)*(diff(f1(x), x, x, x, x))-1.56784615384616*10^12*(diff(f1(x), x, x))+220.592307692308*(diff(f2(x), x, x, x))-3.52947692307693*10^21*(diff(f2(x), x))+43.7538461538462*(diff(f3(x), x, x, x))+4.81292307692309*10^20*(diff(f3(x), x))+6.50473846153848*10^30*f1(x)-7.90000000000000*10^(-8)*eta*f1(x)

0.7656923077e-7*(diff(diff(diff(diff(f1(x), x), x), x), x))-0.1567846154e13*(diff(diff(f1(x), x), x))+220.592307692308*(diff(diff(diff(f2(x), x), x), x))-0.3529476923e22*(diff(f2(x), x))+43.7538461538462*(diff(diff(diff(f3(x), x), x), x))+0.4812923077e21*(diff(f3(x), x))+0.6504738462e31*f1(x)


PDE[222] := 2.14211538461539*10^(-8)*(diff(f2(x), x, x, x, x))-1.64988461538462*10^12*(diff(f2(x), x, x))+7.90486153846156*10^30*f2(x)-220.592307692308*(diff(f1(x), x, x, x))+3.52947692307693*10^21*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f3(x), x, x))+5.13378461538463*10^30*f3(x)-7.90000000000000*10^(-8)*eta*f2(x)

0.2142115385e-7*(diff(diff(diff(diff(f2(x), x), x), x), x))-0.1649884615e13*(diff(diff(f2(x), x), x))+0.7904861538e31*f2(x)-220.592307692308*(diff(diff(diff(f1(x), x), x), x))+0.3529476923e22*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f3(x), x), x))+0.5133784615e31*f3(x)


PDE[333] := -6.38076923076924*10^(-31)*(diff(f3(x), x, x, x, x, x, x))+9.66537046153848*10^(-8)*(diff(f3(x), x, x, x, x))-3.10154753538461*10^12*(diff(f3(x), x, x))-43.7538461538462*(diff(f1(x), x, x, x))-4.81292307692309*10^20*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f2(x), x, x))+5.13378461538463*10^30*f2(x)+2.29989058707693*10^31*f3(x)-7.90105333333333*10^(-8)*omega^2*f3(x)+6.58333333333333*10^(-31)*eta*(diff(f3(x), x, x))

-0.6380769231e-30*(diff(diff(diff(diff(diff(diff(f3(x), x), x), x), x), x), x))+0.9665370462e-7*(diff(diff(diff(diff(f3(x), x), x), x), x))-0.3101547535e13*(diff(diff(f3(x), x), x))-43.7538461538462*(diff(diff(diff(f1(x), x), x), x))-0.4812923077e21*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f2(x), x), x))+0.5133784615e31*f2(x)+0.2299890587e32*f3(x)-0.7901053333e-7*omega^2*f3(x)


bcs := {f1(0) = 0, f1(L) = 0, f2(0) = 0, f2(L) = 0, f3(0) = 0, f3(L) = 0, ((D@@1)(f1))(0) = 0, ((D@@1)(f1))(L) = 0, ((D@@1)(f2))(0) = 0, ((D@@1)(f2))(L) = 0, ((D@@1)(f3))(0) = 0, ((D@@1)(f3))(L) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(L) = 0}

{f1(0) = 0, f1(1/50000000) = 0, f2(0) = 0, f2(1/50000000) = 0, f3(0) = 0, f3(1/50000000) = 0, (D(f1))(0) = 0, (D(f1))(1/50000000) = 0, (D(f2))(0) = 0, (D(f2))(1/50000000) = 0, (D(f3))(0) = 0, (D(f3))(1/50000000) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(1/50000000) = 0}





I have attached a Maple file. My problem is that the solve for the simultaneous equation does not give me understandable results. I even simplified my equations by saying some parameters are zero although my final goal is to find an expression for a and varphi. Any idea how to solve this analytically? I know how to do it numerically. I need an analytical expression.




I have Maple output that extends page width. I can of course see the entire output when I scroll to the right. But since I want to make a screenshot of the output, I need to have the output on one page. Is there a possibility to have the output printed on one page, not extending page width?

Any comments would be greatly appreciated!


i got this error in window 8 in surface 2  then follow this post and install again still error

then follow

then follow and install again same error

and install again same eror

then i add option -f c:\Program File (x86)\MapleXX in cmd and then no error any more 

but no install succeed 

where it go, it still not install

then i try again, there is no room enough to install,  hard disk do not have enough space, then i go to c:\Windows\Temp, after deleted file in it, still not enough space


i find

but template do not state how to activate later

how to write this template and how to clear the temp file created by previous failed cmd install method

hi everyone..i would like to ask,why do we need to type in (101-100λ) in our maple program..why do we need the continuation..thanks in advance for answering..

I'm currently working on building a Grid Layout for a project, and I'm having trouble coding in the RunWindow and GetFile elements into buttons under the grid layout. I've gone through the overviews and examples for them, but had no luck. I'm using Maple 2016.1 for OS X.

Additionally, the structure of the code is slightly different as to how many of the example worksheets structure their Grid Layout code, since the code originated from a Maplet Builder file. I.e. in the example worksheets they would follow as:

maplet := Maplet('onstartup' = 'Action1', 'reference' = 'Maplet1',
         BoxLayout('background' = "#D6D3CE", 'border' = 'false', 'halign' = 'center', 'inset' = '5', 'reference' = 'BoxLayout1', 'valign' = 'center', 'vertical' = 'false', 'visible' = 'true',
                       BoxColumn( BoxCell('hscroll' = 'never', 'value' = 'Button1', 'vscroll' = 'never'),
         GridLayout('background' = "#D6D3CE", 'border' = 'false','halign'='center','inset'='5', 'reference' = 'GridLayout1', 'valign' = 'center', 'visible' = 'true',
                   GridRow('valign' = 'top', GridCell('height' = '1', 'hscroll' = 'never', 'value' = 'BoxLayout1', 'vscroll' = 'never', 'width' = '1' ))),
         Window('layout'= 'GridLayout1', 'reference' = 'W1', 'resizable' = 'true', 'title' = "Maplet"),
          Action('reference' = 'Action1', RunWindow('window'= 'W1'))

However the structure for the code I am working with has action at the very start of the code, follwed by the the code for the buttons then layouts/window.  E.g. (the code has been shortened)

with (Maplets[Elements]):
maplet :=
Evaluate('function'='plot3d(x^2*cos(y),x = -1 .. 1,y = -2*Pi .. 2*Pi)','target'='Plotter1','waitforresult'='true')),
Button('background'="#D6D3CE",'caption'="Insert Molecular Geometry",'enabled'='true','foreground'="#000000",'onclick'='clickButton1','reference'='Button1','visible'='true'),





If anyone would be able to provide an example of code or some guidance I could follow that would be greatly appreciated! 



I want to write the functional Z of J Z = exp(Int(Int(J(x)*Delta(x-y)*J(y), x), y))with Delta(x) = Int(I*exp(-I*k*x)*(1/(k^2-m^2)), k) in terms of the fourier transform of J: J(x) = Int(J(p)*exp(-I*p*x), p).

Actually I'm in Minkowski space and all the integrals should be over 4 dimensions, x,y,k,p should all be four-vectors, but I wanted to keep things short. (The only way I have found to express a 4D integral is using Physics-Intc with the singleparameters of the four vector. Is there a more convenient way to get d^4x?) But still in 1D I cannot solve it.

To find the solution, an exponential of only one integral, is actually pretty easy, since there are integrals over e. g. exp(-I*x*(p-k)) deliver a delta distribution, but I cannot reproduce this in Maple since he doesn't perform the integral over x.

I have found that I can/have to use the command inttrans-fourier to gain the delta distribution, but when I try to use it for the problem mentioned above I run into all kinds of problems. Not to mention that I cannot manage to perform a fourier transformation in 4D.

Does anybody know how to solve this problem? Thanks!


I am using the solve command to solve an equation of the form "linear over quadratic is equal to a constant" where the constant is assumed to be nonzero. This is easily solved by hand, of course, but I to use the solution in other computations. So I asked maple to solve it for me. But when I check maple's solution (i.e. just plug the two solutions in on the left hand side and simplify) maple does not return the original constant. Can anyone help me understand what is going wrong?

Since it's not every day we receive submission to the Maple Application Center that have words like "quantum entanglement" (and "teleportation"!) in the title, I thought I'd share this one:

Matrix Representation of Quantum Entangled States: Understanding Bell's Inequality and Teleportation



Hi everybody!

I am trying to find explicitely the relations between the columns of a matrix

of non-maximal rank. For example, if I have the matrix

M := Matrix([<1,2,3>, <2,4,6>, <5,6,7>]);

I would like that Maple finds that the second column is twice the first one: v_2 = 2*v_1.

How can I do?

Hello All,

(I also sent this fact to Maplesoft Support).

Since I updayed to 2016.1 the F1 key does bring a menu witch send to..F5 only.

No way to have a "full" Help Menu.(See the attached file)

I guess a silly bug jumped in :)

Kind regards,




An update to Maple 2016 is now available. Maple 2016.1 provides:

  • Updated translations for Simplified and Traditional Chinese,  French, Greek, Japanese, Brazilian Portuguese, and Spanish
  • Updates to the new Maple Workbook
  • Enhancements to Maple’s context-sensitive menus
  • A variety of improvements to the math engine and interface


To get this update, use Tools>Check for Updates from within Maple, or visit the Maple 2016.1 downloads page.




I'm not sure that I mean datatable component corectly.

I also consider that I was done somthing wrong

Thank you for advanced for any help.



Oryginaly DataTable was inserted as a 3 x 3. I will traing to push maple to obtain 4 x 4 with specific row and column name.


SetProperty("DataTable0", visibleRows, 4);

DocumentTools:-SetProperty("DataTable0", visibleColumns, 4);

DocumentTools:-SetProperty("DataTable0", columnWidths, [20, 40, 80, 80]);

DocumentTools:-SetProperty("DataTable0", rowNames, [r1, r2, r3, r4]);

DocumentTools:-SetProperty("DataTable0", columnNames, [c1, c2, c3, c4]);

DocumentTools:-SetProperty("DataTable0", update)






The attached worksheet shows a small selection of new and improved results in integration for Maple 2016. Note that integration is a vast topic, so there will always be more improvements that can be made, but be sure that we are working on them.

A selection of new and improved integration results for Maple 2016

New answers in Maple 2016



Indefinite integrals:


int(sqrt(1+sqrt(z-1)), z);



int(arctan((-1+sec(x))^(1/2))*sin(x), x);



int(((1+exp(I*x))^2+(1+exp(-I*x))^2)/(1-2*c*cos(x)+c^2), x);







Definite integrals:

int(arcsin(sin(z)), z=0..1);



int(sqrt(1 - sqrt(1+z)), z=0..1);



int(z/(exp(2*z)+4*exp(z)+10),z = 0 .. infinity);



simplify(int(sinh(a*abs(x-y)), y=0..c, 'method'='FTOC'));

(1/2)*(piecewise(x < 0, 0, 0 <= x, 2*exp(-a*x))+piecewise(x < 0, 0, 0 <= x, -4)+2*piecewise(c <= x, -cosh(a*(-x+c))/a, x < c, (cosh(a*(-x+c))-2)/a)*a-exp(-a*x)+piecewise(x < 0, 0, 0 <= x, 2*exp(a*x))+4-exp(a*x))/a


int(ln(x+y)/(x^2+y), [x=0..infinity, y=0..infinity]);



Definite integrals with assumptions on the parameters:

int(x^(-ln(x)),x=0..b) assuming b > 0;



int(exp(-z)*exp(-I*n*z)*cos(n*z),z = -infinity .. infinity) assuming n::integer;



Integral of symbolic integer powers of sin(x) or cos(x):

int(sin(x)^n,x) assuming n::integer;

` piecewise`(0 < n, -(Sum((Product(1+1/(n-2*j), j = 1 .. i))*sin(x)^(n-2*i-1), i = 0 .. ceil((1/2)*n)-1))*cos(x)/n+(Product(1-1/(n-2*j), j = 0 .. ceil((1/2)*n)-1))*x, n < 0, (Sum((Product(1-1/(n+2*j+1), j = 0 .. i))*sin(x)^(n+2*i+1), i = 0 .. -ceil((1/2)*n)-1))*cos(x)/n+(Product(1+1/(n+2*j-1), j = 1 .. -ceil((1/2)*n)))*ln(csc(x)-cot(x)), x)


int(cos(x)^n,x) assuming n::negint;

-(Sum((Product(1-1/(n+2*j+1), j = 0 .. i))*cos(x)^(n+2*i+1), i = 0 .. -ceil((1/2)*n)-1))*sin(x)/n+(Product(1+1/(n+2*j-1), j = 1 .. -ceil((1/2)*n)))*ln(sec(x)+tan(x))


int(cos(x)^n,x) assuming n::posint;

(Sum((Product(1+1/(n-2*j), j = 1 .. i))*cos(x)^(n-2*i-1), i = 0 .. ceil((1/2)*n)-1))*sin(x)/n+(Product(1-1/(n-2*j), j = 0 .. ceil((1/2)*n)-1))*x


Improved answers in Maple 2016


int(sqrt(1+sqrt(x)), x);



int(sqrt(1+sqrt(1+z)), z= 0..1);



int(signum(z^k)*exp(-z^2), z=-infinity..infinity) assuming k::real;



int(2*abs(sin(x*p)*sin(x)), x = 0 .. Pi) assuming p> 1;



int(1/(x^4-x+1), x = 0 .. infinity);

-(sum(ln(-_R)/(4*_R^3-1), _R = RootOf(_Z^4-_Z+1)))


In Maple 2016, this multiple integral is computed over 3 times faster than it was in Maple 2015.

int(exp(abs(x1-x2))*exp(abs(x1-x3))*exp(abs(x3-x4))*exp(abs(x4-x2)), [x1=0..R, x2=0..R, x3=0..R, x4=0..R], AllSolutions) assuming R>0;



Austin Roche
Mathematical Software, Maplesoft

with(PDEtools, casesplit, declare)

L := 1651.12; m := 3205.12; r1 := .1875; r2 := 2; z1 := 0; z2 := 12; ld := 4.5


declare(u(r, z), w(r, z))``

with(DEtools, gensys)

rr := (L+2*m)*(diff(u(r, z), r))+L*(diff(w(r, z), z))+L*u(r, z)/r

zz := L*(diff(u(r, z), r))+(L+2*m)*(diff(w(r, z), z))+L*u(r, z)/r

rz := m*(diff(u(r, z), z))+m*(diff(w(r, z), r))

BCS := {rr(r1, ld) = 0, rz(r1, z) = T, w(r, 0) = 0, zz(r, z2) = 0}

{3205.12*(diff(u(r, z), z))(.1875, z)+3205.12*(diff(w(r, z), r))(.1875, z) = T, 8061.36*(diff(u(r, z), r))(.1875, 4.5)+1651.12*(diff(w(r, z), z))(.1875, 4.5)+1651.12*(u(r, z))(.1875, 4.5)/r(.1875, 4.5) = 0, 1651.12*(diff(u(r, z), r))(r, 12)+8061.36*(diff(w(r, z), z))(r, 12)+1651.12*(u(r, z))(r, 12)/r(r, 12) = 0, w(r, 0) = 0}




sys3 := [(L+2*m)*(diff(u(r, z), r, r))+(L+m)*(diff(w(r, z), r, z))+(L+2*m)*(diff(u(r, z), r))/r-(L+2*m)*u(r, z)/r^2+m*(diff(u(r, z), z, z)) = 0, (L+m)*(diff(u(r, z), r, z))+m*(diff(w(r, z), r, r))+(L+2*m)*(diff(w(r, z), z, z))+(L+m)*(diff(u(r, z), z))/r+m*(diff(w(r, z), r))/r = 0]

pdsolve(sys3, BCS, numeric)






Hi all,

I have the following PDE, is it solveable by Maple or not. Do I need a boundary condition and how many or I can get a general solution? I am new to Maple. Any help will be appreciated.

Thank you.




1 2 3 4 5 6 7 Last Page 2 of 273