Items tagged with maple maple Tagged Items Feed

Happy New Year! Now that 2014 is behind us, I thought it would be interesting to look back on the year and recap our most popular webinars. I’ve gathered together a list of the top 10 academic webinars from 2014 below. All these webinars are available on-demand, and you can watch the recording by clicking on the webinar titles below.

-----------------------------------------------

See What’s New in Maple 18 for Educators

In this webinar, an expert from Maplesoft will explore new features in Maple 18, including improved tools for developing quizzes, enhanced tools for visualizations, updated user interface, and more.

Introduction to Teaching Calculus with Maple: A Complete Kit

During this webinar you will learn how to boost student engagement with highly interactive lectures, reinforce concepts with built-in “what-if” explorations, consolidate learning with carefully-constructed homework questions, and more.

Maplesoft Solutions for Math Education

In this webinar, you will learn how Maple, The Möbius Project, and Maplesoft’s testing and assessment solutions are redefining mathematics education.

Teaching Concepts with Maple

This webinar will demonstrate the Teaching Concepts with Maple section of our website, including why it exists and how to use it to help students learn concepts more quickly and with greater insight and understanding.

Revised Calculus Study Guide - A Clickable-Calculus Manual

This webinar will provide an overview of the Revised Calculus Study Guide, the most complete guide to how Maple can be used in teaching and learning calculus without first having to learn any commands.

Clickable Engineering Math: Interactive Engineering Problem Solving

In this webinar, general engineering problem-solving methods are presented using clickable techniques in the application areas of mechanics, circuits, control, and more.

Hollywood Math 2

In this second installment of the Hollywood Math webinar series, we will present some more examples of mathematics being used in Hollywood films and popular hit TV series.

Robotics Design in Maple and MapleSim

In this webinar, learn how to quickly create multi-link robots by simply defining DH parameters in MapleSim. After a model is created, learn to extract the kinematic and dynamic equations symbolically in Maple.

Introduction to Maple T.A. 10

This webinar will demonstrate the key features of Maple T.A. from both the instructor and student viewpoint, including new features in Maple T.A. 10.

The Möbius Project: Bringing STEM Courses Online

View this presentation to better understand the challenges that exist today when moving a STEM course online and to find out how the Maplesoft Teaching Solutions Group can help you realize your online course vision.

-----------------------------------------------

Are there any topics you’d like to see us present in 2015? Make sure to leave us a comment with your ideas!

Kim

Hallo. There is a package "Standard Form" (for Maple 3 & 4): http://www.cecm.sfu.ca/~wittkopf/

I am interesting if it can be converted for modern Maple 18?

 

The Maple help definition for spherical coordinates uses the triple (r, φ, θ) (Note the ordering!!) with φ in the range 0..Π and θ in the range 0..2Π. This means that the second entry in the triple is the zenith angle (latitude) and the third entry in th triple is the azimuth angle (longitude). This is confirmed by the relation to cartesian coordinates stated on the definition page as
x= r sin(φ) cos(θ)

y= r sin(φ) sin(θ)

z= r cos(φ)

However the help page for coords has spherical polars defined by the triple (u, v, w), with the relation to cartesian coordinates given as

x= u cos(v) sin(w)

y= u sin(v) sin(w)

z= u cos(w)

which suggests that this time it is the third entry in the triple (ie w) which is the zenith angle (latitude), with the second entry being the azimuth (longitude).

My simple-minded attempt to check which of these interpretations is correct is shown in the attached worksheet. This seems to confirm that the MapleHelp definitions page is correct and the help/coords page is incorrect - or am I missing something??

Download posVecChk.mw

 

 

Hello Maple


I am preparing for an examination in Calculus, but my worksheet in Maple 18 doesn't cooperate. 

A lot of my studypartners use Maple 16 and they have no problems. 


I meet the following error: 

- Error, (in solve) invalid input: hastype expects 2 arguments, but received 1


I'm totally sure, that I'm typing correctly, because I write just the same as my studypartners. 
So is it an error, which only is seen in Maple 18 and can I do anything to solve the problem?

Kind regards
Anders Kristensen

PS: I can't figure out how to add a picture

The William Lowell Putnam Mathematical Competition, often abbreviated to the Putnam Competition, is an annual mathematics competition for undergraduate college students enrolled at institutions of higher learning in the world (regardless of the students' nationalities). One can see some problems and answers here. I find it remarkable that a lot of these problems can be done with Maple. Here is a sample (The DirectSearch package should be downloaded from http://www.maplesoft.com/applications/view.aspx?SID=101333 and installed in your Maple.).

 

rsolve({a(k)=a(k-1)^2-2,a(0)=5/2},a)#2014,A-3

NULL

rs := unapply(rsolve({a(0) = 5/2, a(k) = a(k-1)^2-2}, a), k)

proc (k) options operator, arrow; 2*cosh(arccosh(5/4)*2^k) end proc

(1)

(2)

evalf(product(1-1/rs(k), k = 0 .. infinity))

.4285714286

(3)

identify(%)

3/7

(4)

sol := solve({1/x-1/(2*y) = 2*(-x^4+y^4), 1/x+1/(2*y) = (x^2+3*y^2)*(3*x^2+y^2)}, explicit)

sol[1]; evalf(sol)

{x = 1.122865470, y = .1228654698}, {x = -0.39087502e-2+.3661111372*I, y = -1.003908750+.3661111372*I}, {x = .6924760152-.5923802638*I, y = -.3075239848-.5923802638*I}, {x = .6924760152+.5923802638*I, y = -.3075239848+.5923802638*I}, {x = -0.39087502e-2-.3661111372*I, y = -1.003908750-.3661111372*I}, {x = .3469845126+.1168520057*I, y = 0.3796751170e-1+1.067908527*I}, {x = .7773739670+.4755282581*I, y = .4683569607-.4755282736*I}, {x = .2183569726+.2938926261*I, y = 1.027373941-.2938926802*I}, {x = .3469845126+1.067908522*I, y = 0.3796751830e-1+.1168520056*I}, {x = -.2120324818+.8862728900*I, y = .5969845187+.2984876419*I}, {x = -.3494002531+.8416393955*I, y = -.6584172547-.1094171332*I}, {x = -.2120324818+.2984876377*I, y = .5969845144+.8862728969*I}, {x = -.9084172475+.6600037635*I, y = -0.9940025307e-1+0.7221851120e-1*I}, {x = -.3494002531+.1094171208*I, y = -.6584172336-.8416394020*I}, {x = -.9084172475+0.7221851117e-1*I, y = -0.9940025050e-1+.6600037719*I}, {x = -.9084172475-0.7221851117e-1*I, y = -0.9940025050e-1-.6600037719*I}, {x = -.3494002531-.1094171208*I, y = -.6584172336+.8416394020*I}, {x = -.9084172475-.6600037635*I, y = -0.9940025307e-1-0.7221851120e-1*I}, {x = -.2120324818-.2984876377*I, y = .5969845144-.8862728969*I}, {x = -.3494002531-.8416393955*I, y = -.6584172547+.1094171332*I}, {x = -.2120324818-.8862728900*I, y = .5969845187-.2984876419*I}, {x = .3469845126-1.067908522*I, y = 0.3796751830e-1-.1168520056*I}, {x = .2183569726-.2938926261*I, y = 1.027373941+.2938926802*I}, {x = .7773739670-.4755282581*I, y = .4683569607+.4755282736*I}, {x = .3469845126-.1168520057*I, y = 0.3796751170e-1-1.067908527*I}

(5)

plots:-implicitplot([1/x+1/(2*y) = (x^2+3*y^2)*(3*x^2+y^2), 1/x-1/(2*y) = 2*(-x^4+y^4)], x = 0 .. 2, y = 0 .. 1, color = [red, blue], gridrefine = 4)

 

"http://kskedlaya.org/putnam-archive/  and https://en.wikipedia.org/wiki/William_Lowell_Putnam_Mathematical_Competition"

Re(convert(int(ln(x+1)/(x^2+1), x = 0 .. 1), polylog))

(1/8)*Pi*ln(2)

(6)

Im(convert(int(ln(x+1)/(x^2+1), x = 0 .. 1), polylog))

0

(7)

NULL

DirectSearch:-GlobalOptima(int(sqrt(x^4+(-y^2+y)^2), x = 0 .. y), {y = 0 .. 1}, maximize)

[.333333333333333, [y = HFloat(0.9999999999999992)], 96]

(8)

rsolve({T(0) = 2, T(1) = 3, T(2) = 6, T(n) = (n+4)*T(n-1)-4*n*T(n-2)+(4*n-8)*T(n-3)}, T)

GAMMA(n+1)+2^n

(9)

floor(10^20000/(10^100+3))

9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999730000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000080999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007289999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997813000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000656099999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999803170000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000059048999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982285300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005314409999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998405677000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000478296899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999856510930000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000043046720999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987085983700000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003874204889999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998837738533000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000348678440099999999999999999999999999999999999999999999999999999999999999999999999999999999999999999895396467970000000000000000000000000000000000000000000000000000000000000000000000000000000000000000031381059608999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990585682117300000000000000000000000000000000000000000000000000000000000000000000000000000000000000002824295364809999999999999999999999999999999999999999999999999999999999999999999999999999999999999999152711390557000000000000000000000000000000000000000000000000000000000000000000000000000000000000000254186582832899999999999999999999999999999999999999999999999999999999999999999999999999999999999999923744025150130000000000000000000000000000000000000000000000000000000000000000000000000000000000000022876792454960999999999999999999999999999999999999999999999999999999999999999999999999999999999999993136962263511700000000000000000000000000000000000000000000000000000000000000000000000000000000000002058911320946489999999999999999999999999999999999999999999999999999999999999999999999999999999999999382326603716053000000000000000000000000000000000000000000000000000000000000000000000000000000000000185302018885184099999999999999999999999999999999999999999999999999999999999999999999999999999999999944409394334444770000000000000000000000000000000000000000000000000000000000000000000000000000000000016677181699666568999999999999999999999999999999999999999999999999999999999999999999999999999999999994996845490100029300000000000000000000000000000000000000000000000000000000000000000000000000000000001500946352969991209999999999999999999999999999999999999999999999999999999999999999999999999999999999549716094109002637000000000000000000000000000000000000000000000000000000000000000000000000000000000135085171767299208899999999999999999999999999999999999999999999999999999999999999999999999999999999959474448469810237330000000000000000000000000000000000000000000000000000000000000000000000000000000012157665459056928800999999999999999999999999999999999999999999999999999999999999999999999999999999996352700362282921359700000000000000000000000000000000000000000000000000000000000000000000000000000001094189891315123592089999999999999999999999999999999999999999999999999999999999999999999999999999999671743032605462922373000000000000000000000000000000000000000000000000000000000000000000000000000000098477090218361123288099999999999999999999999999999999999999999999999999999999999999999999999999999970456872934491663013570000000000000000000000000000000000000000000000000000000000000000000000000000008862938119652501095928999999999999999999999999999999999999999999999999999999999999999999999999999997341118564104249671221300000000000000000000000000000000000000000000000000000000000000000000000000000797664430768725098633609999999999999999999999999999999999999999999999999999999999999999999999999999760700670769382470409917000000000000000000000000000000000000000000000000000000000000000000000000000071789798769185258877024899999999999999999999999999999999999999999999999999999999999999999999999999978463060369244422336892530000000000000000000000000000000000000000000000000000000000000000000000000006461081889226673298932240999999999999999999999999999999999999999999999999999999999999999999999999998061675433231998010320327700000000000000000000000000000000000000000000000000000000000000000000000000581497370030400596903901689999999999999999999999999999999999999999999999999999999999999999999999999825550788990879820928829493000000000000000000000000000000000000000000000000000000000000000000000000052334763302736053721351152099999999999999999999999999999999999999999999999999999999999999999999999984299571009179183883594654370000000000000000000000000000000000000000000000000000000000000000000000004710128697246244834921603688999999999999999999999999999999999999999999999999999999999999999999999998586961390826126549523518893300000000000000000000000000000000000000000000000000000000000000000000000423911582752162035142944332009999999999999999999999999999999999999999999999999999999999999999999999872826525174351389457116700397000000000000000000000000000000000000000000000000000000000000000000000038152042447694583162864989880899999999999999999999999999999999999999999999999999999999999999999999988554387265691625051140503035730000000000000000000000000000000000000000000000000000000000000000000003433683820292512484657849089280999999999999999999999999999999999999999999999999999999999999999999998969894853912246254602645273215700000000000000000000000000000000000000000000000000000000000000000000309031543826326123619206418035289999999999999999999999999999999999999999999999999999999999999999999907290536852102162914238074589413000000000000000000000000000000000000000000000000000000000000000000027812838944369351125728577623176099999999999999999999999999999999999999999999999999999999999999999991656148316689194662281426713047170000000000000000000000000000000000000000000000000000000000000000002503155504993241601315571986085848999999999999999999999999999999999999999999999999999999999999999999249053348502027519605328404174245300000000000000000000000000000000000000000000000000000000000000000225283995449391744118401478747726409999999999999999999999999999999999999999999999999999999999999999932414801365182476764479556375682077000000000000000000000000000000000000000000000000000000000000000020275559590445256970656133087295376899999999999999999999999999999999999999999999999999999999999999993917332122866422908803160073811386930000000000000000000000000000000000000000000000000000000000000001824800363140073127359051977856583920999999999999999999999999999999999999999999999999999999999999999452559891057978061792284406643024823700000000000000000000000000000000000000000000000000000000000000164232032682606581462314678007092552889999999999999999999999999999999999999999999999999999999999999950730390195218025561305596597872234133000000000000000000000000000000000000000000000000000000000000014780882941434592331608321020638329760099999999999999999999999999999999999999999999999999999999999995565735117569622300517503693808501071970000000000000000000000000000000000000000000000000000000000001330279464729113309844748891857449678408999999999999999999999999999999999999999999999999999999999999600916160581266007046575332442765096477300000000000000000000000000000000000000000000000000000000000119725151825620197886027400267170471056809999999999999999999999999999999999999999999999999999999999964082454452313940634191779919848858682957000000000000000000000000000000000000000000000000000000000010775263664305817809742466024045342395112899999999999999999999999999999999999999999999999999999999996767420900708254657077260192786397281466130000000000000000000000000000000000000000000000000000000000969773729787523602876821942164080815560160999999999999999999999999999999999999999999999999999999999709067881063742919136953417350775755331951700000000000000000000000000000000000000000000000000000000087279635680877124258913974794767273400414489999999999999999999999999999999999999999999999999999999973816109295736862722325807561569817979875653000000000000000000000000000000000000000000000000000000007855167211278941183302257731529054606037304099999999999999999999999999999999999999999999999999999997643449836616317645009322680541283618188808770000000000000000000000000000000000000000000000000000000706965049015104706497203195837614914543357368999999999999999999999999999999999999999999999999999999787910485295468588050839041248715525636992789300000000000000000000000000000000000000000000000000000063626854411359423584748287625385342308902163209999999999999999999999999999999999999999999999999999980911943676592172924575513712384397307329351037000000000000000000000000000000000000000000000000000005726416897022348122627345886284680807801194688899999999999999999999999999999999999999999999999999998282074930893295563211796234114595757659641593330000000000000000000000000000000000000000000000000000515377520732011331036461129765621272702107522000999999999999999999999999999999999999999999999999999845386743780396600689061661070313618189367743399700000000000000000000000000000000000000000000000000046383976865881019793281501678905914543189676980089999999999999999999999999999999999999999999999999986084806940235694062015549496328225637043096905973000000000000000000000000000000000000000000000000004174557917929291781395335151101532308887070928208099999999999999999999999999999999999999999999999998747632624621212465581399454669540307333878721537570000000000000000000000000000000000000000000000000375710212613636260325580163599137907799836383538728999999999999999999999999999999999999999999999999887286936215909121902325950920258627660049084938381300000000000000000000000000000000000000000000000033813919135227263429302214723922411701985274518485609999999999999999999999999999999999999999999999989855824259431820971209335582823276489404417644454317000000000000000000000000000000000000000000000003043252722170453708637199325153017053178674706663704899999999999999999999999999999999999999999999999087024183348863887408840202454094884046397588000888530000000000000000000000000000000000000000000000273892744995340833777347939263771534786080723599733440999999999999999999999999999999999999999999999917832176501397749866795618220868539564175782920079967700000000000000000000000000000000000000000000024650347049580675039961314533739438130747265123976009689999999999999999999999999999999999999999999992604895885125797488011605639878168560775820462807197093000000000000000000000000000000000000000000002218531234462260753596518308036549431767253861157840872099999999999999999999999999999999999999999999334440629661321773921044507589035170469823841652647738370000000000000000000000000000000000000000000199667811101603467823686647723289448859052847504205678488999999999999999999999999999999999999999999940099656669518959652894005683013165342284145748738296453300000000000000000000000000000000000000000017970102999144312104131798295096050397314756275378511064009999999999999999999999999999999999999999994608969100256706368760460511471184880805573117386446680797000000000000000000000000000000000000000001617309269922988089371861846558644535758328064784065995760899999999999999999999999999999999999999999514807219023103573188441446032406639272501580564780201271730000000000000000000000000000000000000000145557834293068928043467566190278008218249525830565939618480999999999999999999999999999999999999999956332649712079321586959730142916597534525142250830218114455700000000000000000000000000000000000000013100205086376203523912080957125020739642457324750934565663289999999999999999999999999999999999999996069938474087138942826375712862493778107262802574719630301013000000000000000000000000000000000000001179018457773858317152087286141251866567821159227584110909696099999999999999999999999999999999999999646294462667842504854373814157624440029653652231724766727091170000000000000000000000000000000000000106111661199647248543687855752712667991103904330482569981872648999999999999999999999999999999999999968166501640105825436893643274186199602668828700855229005438205300000000000000000000000000000000000009550049507968252368931907017744140119199351389743431298368538409999999999999999999999999999999999997134985147609524289320427894676757964240194583076970610489438477000000000000000000000000000000000000859504455717142713203871631596972610727941625076908816853168456899999999999999999999999999999999999742148663284857186038838510520908216781617512476927354944049462930000000000000000000000000000000000077355401014542844188348446843727534965514746256921793516785161120999999999999999999999999999999999976793379695637146743495465946881739510345576122923461944964451663700000000000000000000000000000000006961986091308855976951360215935478146896327163122961416510664500889999999999999999999999999999999997911404172607343206914591935219356555931101851063111575046800649733000000000000000000000000000000000626578748217797037925622419434193033220669444681066527485959805080099999999999999999999999999999999812026375534660888622313274169742090033799166595680041754212058475970000000000000000000000000000000056392087339601733413306017749077372989860250021295987473736382457208999999999999999999999999999999983082373798119479976008194675276788103041924993611203757879085262837300000000000000000000000000000005075287860564156007197541597416963569087422501916638872636274421148809999999999999999999999999999998477413641830753197840737520774910929273773249425008338209117673655357000000000000000000000000000000456775907450774040647778743767526721217868025172497498537264697903392899999999999999999999999999999862967227764767787805666376869741983634639592448250750438820590628982130000000000000000000000000000041109831670569663658300086939077404909608122265524774868353822811305360999999999999999999999999999987667050498829100902509973918276778527117563320342567539493853156608391700000000000000000000000000003699884850351269729247007824516966441864731003897229738151844053017482489999999999999999999999999998890034544894619081225897652644910067440580698830831078554446784094755253000000000000000000000000000332989636531614275632230704206526979767825790350750676433665964771573424099999999999999999999999999900103109040515717310330788738041906069652262894774797069900210568527972770000000000000000000000000029969067287845284806900763378587428179104321131567560879029936829441608168999999999999999999999999991009279813646414557929770986423771546268703660529731736291018951167517549300000000000000000000000002697216055906075632621068704072868536119388901841080479112694314649744735209999999999999999999999999190835183228177310213679388778139439164183329447675856266191705605076579437000000000000000000000000242749445031546806935896183366558168250745001165697243120142488318477026168899999999999999999999999927175166490535957919231144990032549524776499650290827063957253504456892149330000000000000000000000021847450052839212624230656502990235142567050104912751880812823948662932355200999999999999999999999993445764984148236212730803049102929457229884968526174435756152815401120293439700000000000000000000001966270504755529136180759085269121162831034509442147669273154155379663911968089999999999999999999999410118848573341259145772274419263651150689647167355699218053753386100826409573000000000000000000000176964345427997622256268317674220904654793105849793290234583873984169752077128099999999999999999999946910696371600713323119504697733728603562068245062012929624837804749074376861570000000000000000000015926791088519786003064148590679881418931379526481396121112548658575277686941528999999999999999999995221962673444064199080755422796035574320586142055581163666235402427416693917541300000000000000000001433411197966780740275773373161189327703824157383325650900129379271774991824737609999999999999999999569976640609965777917267988051643201688852752785002304729961186218467502452578717000000000000000000129007007817010266624819603584507039493344174164499308581011644134459749264226384899999999999999999961297897654896920012554118924647888151996747750650207425696506759662075220732084530000000000000000011610630703530923996233764322605633554400975674804937772291047972101377433780374640999999999999999996516810788940722801129870703218309933679707297558518668312685608369586769865887607700000000000000001044956763317783159661038789034507019896087810732444399506194317489123969040233717689999999999999999686512971004665052101688363289647894031173656780266680148141704753262809287929884693000000000000000094046108698600484369493491013105631790647902965919995955557488574021157213621034592099999999999999971786167390419854689151952696068310462805629110224001213332753427793652835913689622370000000000000008464149782874043593254414191179506861158311266932799636000173971661904149225893113288999999999999997460755065137786922023675742646147941652506619920160109199947808501428755232232066013300000000000000761773480458663923392897277206155617504248014023951967240015657449571373430330380196009999999999999771467955862400822982130816838153314748725595792814409827995302765128587970900885941197000000000000068559613241279753105360754948554005575382321262155677051601409170461423608729734217640899999999999979432116027616074068391773515433798327385303621353296884519577248861572917381079734707730000000000006170365191715177779482467945369860501784408913594010934644126825341528124785676079587680999999999998148890442485446666155259616389041849464677325921796719606761952397541562564297176123695700000000000555332867254366000153422115083287445160596802223460984117971414280737531230710847162891289999999999833400139823690199953973365475013766451820959332961704764608575715778740630786745851132613000000000049979958052892940013807990357495870064453712200111488570617427285266377810763976244660216099999999985006012584132117995857602892751238980663886339966553428814771814420086656770807126601935170000000004498196224760364601242719132174628305800834098010033971355568455673974002968757862019419448999999998650541132571890619627184260347611508259749770596989808593329463297807799109372641394174165300000000404837660228432814111844721895716547522075068820903057422001161010657660267188207581747750409999999878548701931470155766446583431285035743377479353729082773399651696802701919843537725475674877000000036435389420558953270066024970614489276986756193881275167980104490959189424046938682357297536899999989069383173832314018980192508815653216903973141835617449605968652712243172785918395292810738930000003279185047850305794305942247355304034928808057449314765118209404186327048164224481412156778320999999016244485644908261708217325793408789521357582765205570464537178744101885550732655576352966503700000295126654306527521487534802261977363143592725170438328860638846376769434334780203327094110048889999911462003708041743553739559321406791056922182448868501341808346086969169699565939001871766985333

(10)

int(exp(-1985*(t+1/t))/sqrt(t), t = 0 .. infinity)

(1/1985)*Pi^(1/2)*exp(-3970)*1985^(1/2)

(11)

l := [seq(LinearAlgebra:-Determinant(Matrix(n, proc (i, j) options operator, arrow; 1/min(i, j) end proc)), n = 1 .. 10)]

[1, -1/2, 1/12, -1/144, 1/2880, -1/86400, 1/3628800, -1/203212800, 1/14631321600, -1/1316818944000]

(12)

with(gfun):

rec := listtorec(l, u(n))

[{u(n+1)+(n^2+5*n+6)*u(n+2), u(0) = 1, u(1) = -1/2}, ogf]

(13)

rsolve(rec[1], u)

(-1)^n*(n+1)/GAMMA(n+2)^2

(14)

``

Hope the reader will try to continue the above.

Download Putnam_done_with_Maple.mw

Dear All,

I'm trying to solve the following in Maple.

minimize(int(0.1e-3+.5*t+0.2e-2*t^2-b*t-a, t = 0 .. 300), location = true)

But Maple told me that the answer is

Float(-infinity), {[{a = Float(infinity), b = Float(infinity)}, Float(-infinity)]}.

I really need to get a kind of numerical answer. Would it be possible? Please Help me!!

Hi

I have this PDE and was wondering how I can get Maple to solve it

utt+2ut-uxx=18sin(3πx/l)

with conditions u(0,t)=u(l,t)=0 and u(x,0)=ut(x,0)=0

Thanks

James

 

 

 

ds(t)/dt = a*s(t)*(1 - s(t) - m(t)) - b*s(t) 

dm(t)/dt = c*s(t) - d*m(t)

 

need to find steady state of this system ( finding this simultaneously) in maple 

 

How can you do it? 

Ever year about this time, somewhat geeky holiday-themed content makes the rounds on the internet.  And I realized that even though I have seen much of this content already, I still enjoy seeing it again. (Why wouldn’t I want to see a Dalek Christmas tree every year?)

So in the spirit of internet recycling, here are a couple of older-but-still-fun Maple applications with a Christmas/holiday theme for your enjoyment.

Talkin’ Turkey

The Physics of Santa Claus

Other examples (old or new) are most welcome, if anyone wants to share.

eithne

Hello,

I am trying to solve the boundary value problem (1-x^2)*y'' - 2*x*y' +12*y = 0 with y(-1) = -1 and y(1) = 1.  I have not used Maple much, but from some web surfing, it seems like the following inputs should work:

de := (1-x^2)*(diff(y(x), `$`(x, 2)))-2*x*(diff(y(x), x))+12*y(x) = 0

Y := dsolve(de, y(-1) = -1, y(1) = 1)

However, when I input these lines, I get the error: Error(in dsolve), found wrong extra argument(s): y(-1) = -1, y(1) = 1

Does this mean that Maple can't solve this problem?  Is my syntax wrong?  I would appreciate any help.

 

Thanks!

Tim

 

I found the page:http://12000.org/my_notes/rankTest/test.htm,

Comparing with MMa&Matlab, Maple is abit slow.

The author guess the reason is Intel MKL.

I searched the help page, http://www.maplesoft.com/support/help/Maple/view.aspx?path=copyright,

found this info:

Intel® MKL Copyright © 1999, 2000-2008 Intel Corporation. All rights reserved.

 Does this means the Intel MKL in maple is a 6 years old product?

Is this important?

I want to know.

Hi,

When I run a maple program which take a long time (in command line), I have this kind of message every second:

"memory used=43867.3MB, alloc=147.3MB, time=856.28"

Does there exist any way to avoid this display ?

Thanks in advance.

Hi everyone, I have been trying to plot the Taylor Polynomial approximation with the following code. However, my maple crushes everytime I run it. I indexed some of the variables to get the plot. The code works fine without the index. What did I do wrong?

y := array(1 .. 2);

Digits := 10;

n := 30;

h := .1;

T := 0;

X := 1; 

f := (x, t) -> 1/(3*x(t)-t-2); 

one := 1/(3*x(t)-t-2);

two := diff(f(x, t), t);

first := diff(x(t), t)

 

for k to n do

y[1] := subs(t = T(k), x(T(k)) = X(k), one);

y[2] := subs(first = y[1], t = T, x(T(k)) = X(k), two);

X[k+1] := X+sum(y[i]*h^i/factorial(i), i = 1 .. 2);

T[k+1] := T+h

end do;

X[n];

data := [seq([T[n], X[n]], n = 0 .. 30)];

p[2] := plot(data, style = point, color = blue);

p[3] := plot(data, style = line, color = blue);
display(p[2],  p[3])


 

The code without Index (which works fine)

y := array(1 .. 2);

Digits := 10;

n := 30;

h := .1;

T := 1;

X := .1547196278;

f := (x, t) -> 1/(3*x(t)-t-2); 

one := x(t)^4*e^t-(1/3)*x(t);

two := diff(f(x, t), t);

first := diff(x(t), t);

for k to n do

y[1] := subs(t = T, x(T) = X, one);

y[2] := subs(first = y[1], t = T, x(T) = X, two);

X := X+sum(y[i]*h^i/factorial(i), i = 1 .. 2);

T := T+h

end do

I'm using MAPLE files, and a little to bored to run all commands in it.

Instead of it would be a bit easier to make a package.

Is there any post here how can I do it?

2 3 4 5 6 7 8 Last Page 4 of 268