Items tagged with maple maple Tagged Items Feed

Hello those in Mapleprimes,

 

I want to know whether there is a good way to modify the first expression to the second one below.

first expression: 

> p+p^(-1/(theta-1))*sum(q[i]^(theta/(theta-1)), i = (1 .. n));

second expression:

> p^(-1/(theta-1))*(p^(theta/(theta-1))+sum(q[i]^(theta/(theta-1)),i=1..n));

First and Second are the same. But, I want to know how I can modify from the former to the latter.

 

Thank you in advance.

 

taro

 

Hi My main problem is that the new installer is ridiculously small that I cannot even press the buttons acuratley. I am running windows 8.1 on a Surface Pro 2. I had no problems installing maple 17.

 

I also ran into errors using the Bitrock installer 3 times, I am not even sure if it is installed correctly now.

 

is there anyway to get maple 18 without using the Bitrock installer?

Hello guys ...

I used a numerically method to solve couple differential equation that it has some boundary conditions. My problem is that some range of answers has 50% error . Do you know things for improving our answers in maple ?

my problem is :

a*Φ''''(x)+b*Φ''(x)+c*Φ(x)+d*Ψ''(x)+e*Ψ(x):=0

d*Φ''(x)+e*Φ(x)+j*Ψ''(x)+h*Ψ(x):=0

suggestion method by preben Alsholm:

a,b,c,d,e,j,h are constants.suppose some numbers for these constants . I used this code:


VR22:=0.1178*diff(phi(x),x,x,x,x)-0.2167*diff(phi(x),x,x)+0.0156*diff(psi(x),x,x)+0.2852*phi(x)+0.0804*psi(x);
VS22:=0.3668*diff(psi(x),x,x)-0.0156*diff(phi(x),x,x)-0.8043*psi(x)-0.80400*phi(x);
bok:=evalf(dsolve({VR22=0,VS22=0}));

PHI,PSI:=op(subs(bok,[phi(x),psi(x)]));
Eqs:={eval(PHI,x=1.366)=1,eval(diff(PHI,x),x=1.366)=0,eval(PHI,x=-1.366)=1,eval(diff(PHI,x),x=-1.366)=0,
eval(PSI,x=1.366)=1,eval(PSI,x=1.366)=1};
C:=fsolve(Eqs,indets(%,name));
eval(bok,C);
SOL:=fnormal(evalc(%));


I used digits for my code at the first of writting.

please help me ... what should i do?

I'm having some trouble maybe someone can point out my error please. I'm using the Maple 18 worksheet to try some basic linear equations. The trouble is in the last step.

 

1.) I start with 2 ordered pairs (2, 14) and (14,18)

Then I put in my formula to discover the slope. I confirm it looks correct in the Variables window.

m := (y2-y1)/(x2-x1);

 

2.)  Next I input the values for my ordered pairs. I also confirm thru the Variables window.

x1 := 2;

y1 := 14;

x2 := 3;

y2 := 18;

 

3.) Now I can type m and expect to get an answer to what my slope is.

m;

4.) Now I want Slope/Intercept form of y=mx+b. When I put in the formula y-y1=m(x-x1) i get a strange result

 

When I execute this formula, the result is y-14=4. (or thru context menu I tell it to solve for y, then I get y=18)

y-y1=m(x-x1) 

When I manually input the values, the output is y-14=4x-8 (or thru context menu I tell it to solve for y, then I get y=4x+6)

y-14 = 4*(x-2)

 

 

 

Why is my equation (y-y1=m(x-x1)) not executing properly?

hi,I want to solve this equation with the following boundary condition numerically by maple:

Hi every body:

i will plot this function in maple in domain x=0..1,but when use the plot commond i see this warning:

Warning, unable to evaluate the function to numeric values in the region; complex values were detected

how can I plot it?

eq := 4.728139762*10^(-14)*sqrt((-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(1/3)*(-(1.114348319*10^53*I)*x^4-6.433693022*10^52*x^4+(2.688368867*10^57*I)*x^2+1.552130489*10^57*x^2+5.072945110*10^26*x^2*(-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(1/3)-3.723246850*10^61-6.448852713*10^61*I+(1.732050808*I)*(-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(2/3)+1.231339558*10^31*(-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(1/3)-1.*(-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(2/3)))/(-5.905404581*10^83*x^4-1.382542004*10^88*x^2+2.271592177*10^92+1.631888578*10^79*x^6+2.795756904*10^23*sqrt(-1.317535223*10^121*x^8+6.370084310*10^125*x^6-7.852926774*10^129*x^4+2.223707894*10^132*x^2-1.592721566*10^134))^(1/3)

with regards...

 Hello everybody, I need help please   

 


restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=-1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

-1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

(1)

A:=168913.8672;

168913.8672

(2)

s:=0.0666666666667;

0.666666666667e-1

(3)

n:=49.97465213;

49.97465213

(4)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*2*(s*sinh(k*ly+k*ly)*sin(omega*t-k*x(t)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+2710.493534*sin(.43*t-0.2001014429e-1*x(t)) = 0

(5)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))+9.81*(mp+mb)+1000*g*z(t)*15.3*30+A*cosh(k*ly+k*z(t))*n*(cos(omega*t-k*15)-cos(omega*t+k*15))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))+13263.12+4502790.000*z(t)+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*z(t))*(cos(.43*t-.3001521644)-cos(.43*t+.3001521644)) = 0

(6)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(7)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(8)

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(9)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=100000);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5145421769461311e-3, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 100000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = -.0, (5) = .0, (6) = .0, (7) = .0, (8) = -9.809999999999999}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(10)

``

odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,x(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,z(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

thank you 

Hi Mapleprimers,

I was wondering if there way a way to use restart(); and clear Maple's memory, but protect the memory in a certain variable?  I would like to return the memory to the operating system, but keep a symholic function in memory.

Alternatively, is there a way to save a symbolic function to a file, then reload it at a seperate time?

 

Maple WWW Net - Maple WWW integration with MapleNet

DigiArea Team is proud to present Maple WWW Net. 

Maple WWW Net is a part of Maple WWW technology that brings integration with MapleNet. Now you can access the power of Maple core directly from your worksheets in the internet. Maple WWW Net allows you to develop Maple worksheets enriched by live computations and interactive controls.

You can read more about the technology here:
http://digi-area.com/light/MapleWWW/

 

 

My problem is i am working with a very large randomly generated output, generated using maple's builtin in random generating functions. I have the output which i want to investigate but i want to be able to reproduce this result when i save and close the worksheet. Since the list of generators is very long copy pasting is not very nice and i donot know the seed of these generaters. I want to ask if i can store the values in variable in the worksheet so that when i open the worksheet i can get the same random generates stored in the variable.

Hello

 

Is it me or is it not possible to hide table borders in Maple 18?

I can not hide the borders when I make tables ind Maple 18..

 

Jakob

 

i am using maple to solve a system of ordinary differential equations , 3 unknows (x,y, x ), and 3 equations (dx/dt,dy/dt,dz/dt)

there is one known variable denpendent on x and z

# code begins here

if x(t) <= z(t) then Q(t) := 8 end if;

if x(t) > z(t) then Q(t) := 10 end if;

 

eq1 := diff(x(t), t) = 3*x(t)-1;

eq2 := diff(y(t), t) = y(t)+Q(t);

eq3 := diff(z(t), t) = z(t);

eqs := {eq1, eq2, eq3};

 

# code ends here

 

above i put the system of ODEs, the code maybe illegal in maple, but i wrote in this way to make it clear.

Q is dependent on x and z.

 

in the past, when i was trying to solve ODEs, normally, eqs contains with only x,y,z as unknowns. but in this eqs, clearly, Q is included as an unknown. 

 

i've tried to use piecewise function to express Q(t), but failed.

 

how could i solve a system like this? thanks 

 

 

Hello all!

I have to solve 1D Heat equation with Neumann B.C. using implicit scheme.

I have: 

I have my code in Maple for the solution of this problem using explicit sceme for Neumann B.C.. And I also have the solution of the problem using implicit scheme(but for Dirichle B.C.).

implicit_method_Dirichle_B.C..mws
explicit_method_Neumann_B.C..mws

I know that my Neumann B.C. for implicit scheme will be written like this.
I determined the ghost points and then got the final view of the B.Cs.:

But I can not imagine how I should put my Neumann  B.C. for implicit scheme in the code. 

Please, help me! I will be very grateful!

Hi MaplePrimers,

I've written a function that needs to be evaluated at a bunch of different points.  Evaluating it in a loop works. I'm wondering if there was a faster way to do this because I'm evaluating a list of 400k+ sets of points.  

Right now I'm using a loop with the following code.

for i from 1 to 500000 do 
     Results(i):= f(L[i][])[1];
od;

 

If I have a function f, which has 5 arguements, f(y, w, x,y,z).

I also have a list of those arguements:  L = [[1,2,3,2,3],[4,5,6,2,3],[7,8,9,2,3]]

What would be the fastest way to get a list of results?  Also, is there a way that I could preallocate memory for this list?

Ideally, I would like to get the output as as list.  ie:

Results:= [[f(1,2,3,2,3)], [f(4,5,6,2,3)], [f(7,8,9,2,3)]]

 

Hello,

I am writing a program in C that uses the open maple library. It is not the first time that I use it but now I am facing a strange problem that involves the simplify command: suppose a,x,y are symbols that are not previously used in maple, the following lines

1)  EvalMapleStatement(kv, "simplify((a*x^2-y^2)/(x^2*y^2-1));");

2)  EvalMapleStatement(kv, "simplify((2*x^2-y^2)/(x^2*y^2-1));");

only differ by the fact that the parameter a is replaced by 2 in the second line. But they return the following output:

1) (a*x^2-y^2)/(x^2*y^2-1)

that is correct, nothing to simplify..

2) Error, (in gcd/LinZip) input must be polynomials over the integers

I must be doing something wrong but I am getting nowhere...

Thanks...

 

P.S. This is the complete listing 

 

#include <stdio.h>

#include <stdlib.h>

 

#include "maplec.h"

 

static void M_DECL textCallBack( void *data, int tag, char *output )

{

    printf("%s\n",output);

}

 

int main( int argc, char *argv[] )

{

    char err[2048];  /* command input and error string buffers */

    MKernelVector kv;  /* Maple kernel handle */

    MCallBackVectorDesc cb = {  textCallBack,

                                0,   /* errorCallBack not used */

                                0,   /* statusCallBack not used */

                                0,   /* readLineCallBack not used */

                                0,   /* redirectCallBack not used */

                                0,   /* streamCallBack not used */

                                0,   /* queryInterrupt not used */

                                0    /* callBackCallBack not used */

                            };

    ALGEB r, l;  /* Maple data-structures */

        char *myargv[]={"maple"};

        int myargc=1;

 

    if( (kv=StartMaple(myargc,myargv,&cb,NULL,NULL,err)) == NULL ) {

        printf("Fatal error, %s\n",err);

        return( 1 );

    }

 

EvalMapleStatement(kv, "simplify((a*x^2-y^2)/(x^2*y^2-1));");

 

EvalMapleStatement(kv, "simplify((2*x^2-y^2)/(x^2*y^2-1));");

 

    StopMaple(kv);

 

    return( 0 );

}

 

compiled with

gcc prova.c -I /Library/Frameworks/Maple.framework/Versions/Current/extern/include/ -L /Library/Frameworks/Maple.framework/Versions/Current/bin.APPLE_UNIVERSAL_OSX/ -l maplec

3 4 5 6 7 8 9 Last Page 5 of 261