Items tagged with mathematica mathematica Tagged Items Feed

There are no users with 0 reputation.  It appears all users with 0 reputation and negative reputation have been erased.  One user I can not find who is or now was a legitimate user is John Mcloone an employee at Mathematica who made a post here.  I can only think during the recent spam attack that all users with 0 or negative reputation were removed.  Some of those users had legitimate questions.  Where did those users, John Mcloone and their posts go? 


     I have a list of 603 integrals that I want to evaluate. Unfortunately, I can't get Maple to do most of them. Mathematica can do some that Maple can't, and returns an answer in terms of BesselJ functions. So my question is 2-fold

1) Is there a way to make Maple do this integral?
2) If not, is there a way to efficiently convert 603 expessions to Mathematica and back?


assume(k1::real, k2::real, R::real, R>0);
a :=cos(x)*exp(I*(k1*R*sin(x)+k2*R*sin(x)-4*x))*sin(x):
int(a, x=-Pi/2..Pi/2) assuming real;



assume(k1::real, k2::real, R::real, R>0);

a :=cos(x)*exp(I*(k1*R*sin(x)+k2*R*sin(x)-4*x))*sin(x)



int(a, x=-Pi/2..Pi/2) assuming real;

int(cos(x)*exp(I*(k1*R*sin(x)+k2*R*sin(x)-4*x))*sin(x), x = -(1/2)*Pi .. (1/2)*Pi)


Mathematica Answer

ans := -(1/((k1 + k2)^6*R^6))*2*I*Pi*
10*(k1 + k2)^4*Pi*R^4*BesselJ(2, sqrt((k1 + k2)^2*R^2))
+ 2*Pi ((k1 + k2)^2*R^2)^(3/2) (-30 + (k1 + k2)^2*R^2) *BesselJ(3, sqrt((k1 + k2)^2*R^2))
- (k1 + k2)^4*R^4*(-(k1 + k2)*R*cos((k1 + k2)*R) + sin((k1 + k2)*R))
+ 8*(k1 + k2)^2*R^2*(-(k1 + k2)*R*(-6 + (k1 + k2)^2*R^2)*cos((k1 + k2)*R) + 3*(-2 + (k1 + k2)^2*R^2)*sin((k1 + k2)*R))
- 8*(-(k1 + k2)*R*(
120 - 20*k2^2*R^2 + k1^4*R^4 + 4*k1^3*k2*R^4 +

 k2^4*R^4 + 4*k1*k2*R^2*(-10 + k2^2*R^2) +

 k1^2*(-20*R^2 + 6*k2^2*R^4))*cos((k1 + k2)*R) +

 5*(24 - 12*k2^2*R^2 + k1^4*R^4 + 4*k1^3*k2*R^4 + k2^4*R^4 +

 4*k1*k2*R^2*(-6 + k2^2*R^2) +

 6*k1^2*R^2*(-2 + k2^2*R^2))*sin((k1 + k2)*R)

-(2*I)*Pi*(10*(k1+k2)^4*Pi*R^4*BesselJ(2, (k1+k2)*R)+2*Pi((k1+k2)^2*R^2)^(3/2)*BesselJ(3, (k1+k2)*R)-(k1+k2)^4*R^4*(-(k1+k2)*R*cos((k1+k2)*R)+sin((k1+k2)*R))+8*(k1+k2)^2*R^2*(-(k1+k2)*R*(-6+(k1+k2)^2*R^2)*cos((k1+k2)*R)+3*(-2+(k1+k2)^2*R^2)*sin((k1+k2)*R))+8*(k1+k2)*R*(120-20*R^2*k2^2+k1^4*R^4+4*k1^3*k2*R^4+k2^4*R^4+4*k1*k2*R^2*(R^2*k2^2-10)+k1^2*(6*R^4*k2^2-20*R^2))*cos((k1+k2)*R)-40*(24-12*R^2*k2^2+k1^4*R^4+4*k1^3*k2*R^4+k2^4*R^4+4*k1*k2*R^2*(R^2*k2^2-6)+6*k1^2*R^2*(R^2*k2^2-2))*sin((k1+k2)*R))/((k1+k2)^6*R^6)





Mathematica 10.3.0 was announced yesterday. This is the 6th release of Mathematica 10 during 16 months. I wonder its  MathematicaFunctionData and   FindFormula . At first sight, the former is an analog of FunctionAdvisor of Maple, but the latter isn't any analog. Also compare the outputs of




>`assuming`([residue(binomial(n, k), n = -j)], [integer, j > 0]);

                residue(binomial(n, k), n = -j)
Let us wait for Maple 2016.


I am trying to use Maple 18 to do some computations with matrices over a ring of polynomials in one variable over the integers $\mathbb{Z}[x]$, or the corresponding field of fractions $\mathbb{Q}(x)$.


The matrices in question are of dimension approximately 5000 and are sparse. The algorithm requires at least as many matrix multiplications as the dimension of the space.

Doing some small examples, of dimension 674, with a laptop (i7-3520 M CPU @2.9GHz with 8GB of Ram) gave the following disappointing result:




When a colleague with access to a Mathematica license performed an identical calculation using sparse matrices in Mathematica, we found that Mathematica performed the calcuation in fractions of a second.


In small dimensional examples, constructing the matrices over the field of fractions as sparse in Maple 18 resulted in a four fold decrease in the already disappointing performance of the LinearAlgebra package in Maple 18.


Is there any way to improve the computational performance of Maple 18 for symbolic linear algebra? Alternatively, is the performance of Maple 2015 for symbolic linear algebra noticably better than Maple 18?


Thanks in advance.




Hello people

i have a quetion

what is the perposes of these softwares,maple,matlab,mathmatica and latex.

for example i listened from somewhere that matlab is best for matrices, then what are the major task of these softwares which i listed above including matlab,

how we make comparison of these softwares.



I happen to just have a look at mathematica's imagedeconvolve function .  I had a look at the Examples and saw how a very blurred image of Neil Armstrong standing on the moon with the lunar lander was deconvolved into some really amazing detail. 

I don't believe that image could deconvolve into what they show on that page, It's somewhat misleading.

The only way that deconvolved image could have such great detail is the blurred image used was most likely convolved from the detailed image.  

Hello all ,

Having read a recent post about comparing Maple and Mathematica I'd like to throw my 2 cents (FWIW).

It is *silly* (not to say stupid) to compare these two softwares.

Maple can do "things" that Mathematica can't. For examples Differential Geometry, Lie Algrebra, covariant derivative and the like.

And Mathematica Manipulate command is far better than Maple Explore (just another exemple).

I have being using Maple since Release V.2 (1992) and Mathematica since Release 1.1.a (1991).

I use both of them on a daily basis and I *LOVE* them both.

Inputs are welcome :-)

Kind regards to all,




I just started to use Maple and I have a question if there exists in it an equivalent function to Mathematica's FindInstance? In general, I have an inequality and I would like to find few first solutions to it.

Does anyone know how to using some softward convert ?  for example  I have maple code , but I want to using mathematica code .I need fast way.

In this section, we will consider several linear dynamical systems in which each mathematical model is a differential equation of second order with constant coefficients with initial conditions specifi ed in a time that we take as t = t0.

All in maple.

(in spanish)




I would like to announce a new unofficial record computation of the MRB constant that was finished on Sun 21 Sep 2014 18:35:06.

I really would like to see someone beat it with Maple!

It took 1 month 27 days 2 hours 45 minutes 15 seconds. I computed 3,014,991 digits of the MRB constant, (confirming my previous 2,00,000 or more digit computation was actually accurate to 2,009,993 digits), with Mathematica 10.0. I Used my version of Richard Crandall's code:



(*Fastest (at MRB's end) as of 25 Jul 2014.*)


prec = 3000000;(*Number of required decimals.*)ClearSystemCache[];

T0 = SessionTime[];

expM[pre_] := 

  Module[{a, d, s, k, bb, c, n, end, iprec, xvals, x, pc, cores = 12, 

    tsize = 2^7, chunksize, start = 1, ll, ctab, 

    pr = Floor[1.005 pre]}, chunksize = cores*tsize;

   n = Floor[1.32 pr];

   end = Ceiling[n/chunksize];

   Print["Iterations required: ", n];

   Print["end ", end];

   Print[end*chunksize]; d = ChebyshevT[n, 3];

   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};

   iprec = Ceiling[pr/27];

   Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;

        x = N[E^(Log[ll]/(ll)), iprec];

        pc = iprec;

        While[pc < pr, pc = Min[3 pc, pr];

         x = SetPrecision[x, pc];

         y = x^ll - ll;

         x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];(*N[Exp[Log[ll]/ll],

        pr]*)x, {l, 0, tsize - 1}], {j, 0, cores - 1}, 

       Method -> "EvaluationsPerKernel" -> 4]];

    ctab = ParallelTable[Table[c = b - c;

       ll = start + l - 2;

       b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));

       c, {l, chunksize}], Method -> "EvaluationsPerKernel" -> 2];

    s += ctab.(xvals - 1);

    start += chunksize;

    Print["done iter ", k*chunksize, " ", SessionTime[] - T0];, {k, 0,

      end - 1}];

   N[-s/d, pr]];

t2 = Timing[MRBtest2 = expM[prec];]; DateString[]


MRBtest2 - MRBtest2M



I used a six core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz 3.20 GHz with 64 GB of RAM of which only 16 GB was used.

t2 From the computation was {1.961004112059*10^6, Null}.




Hi all

I have a mathematical problem and I asked it in various sites but the answers till yet are not correct.

Assume that we have:

b[n,m]:=unapply(piecewise(t>=(n-1)*tj/N and t<n*tj/N, T[m](N*t-(n-1)*tj), 0), t):

where n,N,tj are known constants. furthermore assume that we want to comute the following integral:

for following approximations:

I have written the following code but it seems to be incorrect:


the original program is :


I will be so grateful if any one can help me to solve it by maple

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

hi every one,i want to know what are the maple strentgh compraed to matlab and mathematica ? why someone should choose maple instead of these both ? i searched the net,but nothing useful has been found , tnx in advance .

Hi All,

I would like to request information the representation of the following result from Mathematica :

Mathematica result:    MeijerG[{{0, 1/2}, {}}, {{0, 1}, {-1, -1}}, a, 1/2]

Maple is able to take: MeijerG[{{0, 1/2}, {}}, {{0, 1}, {-1, -1}}, a] which is represented as
                                MeijerG([[0, 1/2], []], [[0, 1], [-1, -1]], a)

Could you please advise me on how to implement this function in maple. I would be grateful if you also include matlab in the discussion.

The matiematica output is a result of the following integration:

Integrate[r*(BesselI[1, al*r]* BesselK[1, al*r]), r]


Looking forward to your reply. Thanks in advance.



HelloI have Mathematica code(notebook) I want to convert it to Maple code (worksheet)

1 2 3 4 Page 1 of 4