Items tagged with mathematics mathematics Tagged Items Feed

Hi Again

Assume that we have known matrix namely, Q, of order (m+1)*(m+1) and we want to construct following matrix

where 0(bar) is zero matrix of orde (m+1)*(m+1) and New matrix should be of order {N*(m+1)}*{N*(m+1)} where N is known constant.

thanks for any guide


Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Good morning.

 

I request your kind suggestion to my query posted.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

hi all.

I have wrore the following program for optimization with bernstein and block pulse hybrid functions.

the program have some errors which i can't understand.

Bernestien1.mws

restart:

alias(C=binomial):
with(LinearAlgebra):
macro(LA= LinearAlgebra):


HybrFunc:=proc(N, M,  tj)               # N=Number of subintervals,  M=Number of functions in subintervals
 
local B, n, m;

global b;

for n from 1 to N do
for m from 0 to M-1 do

B := (i,m,t) -> C(m,i)*(1-t)^(m-i)*t^i:

b[n,m]:=unapply(piecewise(t>=(n-1)*tj/N and t<n*tj/N, B(m,2,N*t-(n-1)*tj), 0), t):
 od:od:


Array(1..N, 0..M-1, (n,m)->b[n,m](t)):

#convert(%,vector);
end proc:

HybrFunc(3, 3, 1);




                                       # End Of Definition
 
g2(t):=t;            #*exp(t-1):                      # Any other function can be replaced here
    

g1(t):=add(add(c[n,m]*b[n,m](t), m=0..2), n=1..3);
Optimization[Minimize](sqrt(int((g2(t)-g1(t))^2, t=0.. 1)));
assign(op(%[2]));
plot([g2(t),g1(t)], t=0..1, 0..5, color=[blue,red],thickness=[1,3],discont, scaling=constrained);

Array(1 .. 3, 0 .. 2, {(1, 0) = piecewise(0 <= t and t < 1/3, (1-3*t)^2, 0), (1, 1) = piecewise(0 <= t and t < 1/3, (6*(1-3*t))*t, 0), (1, 2) = piecewise(0 <= t and t < 1/3, 9*t^2, 0), (2, 0) = piecewise(1/3 <= t and t < 2/3, (2-3*t)^2, 0), (2, 1) = piecewise(1/3 <= t and t < 2/3, (2*(2-3*t))*(3*t-1), 0), (2, 2) = piecewise(1/3 <= t and t < 2/3, (3*t-1)^2, 0), (3, 0) = piecewise(2/3 <= t and t < 1, (3-3*t)^2, 0), (3, 1) = piecewise(2/3 <= t and t < 1, (2*(3-3*t))*(3*t-2), 0), (3, 2) = piecewise(2/3 <= t and t < 1, (3*t-2)^2, 0)}, datatype = anything, storage = rectangular, order = Fortran_order)

g2(t) := t

"g1(t):=c[1,0] ({[[(1-3 t)^2,0<=t and t<1/3],[0,otherwise]])+c[1,1] ({[[6 (1-3 t) t,0<=t and t<1/3],[0,otherwise]])+c[1,2] ({[[9 t^2,0<=t and t<1/3],[0,otherwise]])+c[2,0] ({[[(2-3 t)^2,1/3<=t and t<2/3],[0,otherwise]])+c[2,1] ({[[2 (2-3 t) (3 t-1),1/3<=t and t<2/3],[0,otherwise]])+c[2,2] ({[[(3 t-1)^2,1/3<=t and t<2/3],[0,otherwise]])+c[3,0] ({[[(3-3 t)^2,2/3<=t and t<1],[0,otherwise]])+c[3,1] ({[[2 (3-3 t) (3 t-2),2/3<=t and t<1],[0,otherwise]])+c[3,2] ({[[(3 t-2)^2,2/3<=t and t<1],[0,otherwise]])"

Error, (in Optimization:-NLPSolve) complex value encountered

Error, invalid left hand side in assignment

(1)



Download Bernestien1.mws

 I'll be so grateful if any one can help me.

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all

Assume that we have construct new orthogonal Hybrid function of block pulse and bernstein poly nomials as follow:

and assume that we want to approximate a function as follows:

 

how can we do this with maple????Indeed we want to optimize using this hybrid functions

note that the degree of bernstein polynomials is fix or should be fixed...and

regards

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi All

Assume that we have:

and the hybrid function with block pulses with the following form:

if we want to introduce this form to maple so that we can do:

then how can we do this????

especially if we want to approximate t or t^2 or sin(3*t) by mentioned form, how maple can help us?

 

thanks a lot for coming answers 

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all.

Assume that we have partitioned [0,a], into N equidistant subintervals and in each subinterval we have M sets of poly nomials of the following form:

where Tm(t)=tm( namely Taylor Series) and tf is a(final point)
for Example with N=4, M=3 we have:

now we want to approximate a function, asy f(t), in this interval with following form:

How can we do this with maple????

how can we find the ci's?????

Thanks a lot

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all;

Hope all of you  be in good health

I want to construct a special function b_{nm}(t) like:

with piecewise command i did it but the result is incorrect.

any one can help me to do it?

Best wishes

 

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all 

I have the following segment of maple program which belongs to time delay systems dynamic. here C=X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P, is a matrix(vector) which comes from reordering the system terms and my goal is to minimizing J:=X.E.Transpose(X)+U.E.Transpose(U), subject to constraint C=0, but i don't know how to do so.

I will be so grateful if anyone can guide me

best wishes

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department


restart:
with(Optimization):
with(LinearAlgebra):
macro(LA= LinearAlgebra):
L:=1:  r:=2:  tau:= 1:
interface(rtablesize= 2*r+1):

Z:= Matrix(
     2*r+1, 2*r+1,
     [tau,
      seq(evalf((L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L)), iz= 2..r+1),
      seq(evalf((L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L))), iz= r+2..2*r+1)
      ],
     scan= columns,
     datatype= float[8]
);
                        
Dtau00:= < 1 >:
Dtau01:= Vector[row](r):
Dtau02:= Vector[row](r):
Dtau10:= Vector(r):
Dtau20:= Vector(r):

Dtau1:= LA:-DiagonalMatrix([seq(evalf(cos(2*i*Pi*tau/L)), i= 1..r)]):
Dtau2:= LA:-DiagonalMatrix([seq(evalf(sin(2*i*Pi*tau/L)), i= 1..r)]):
Dtau3:= -Dtau2:
Dtau4:= copy(Dtau1):

Dtau:= < < Dtau00 | Dtau01 | Dtau02 >,
         < Dtau10 | Dtau1  | Dtau2  >,
         < Dtau20 | Dtau3  | Dtau4  > >;
 
P00:= < L/2 >:
P01:= Vector[row](r):
P02:= Vector[row](r, j-> evalf(-L/j/Pi), datatype= float[8]):
P10:= Vector(r):
P20:= Vector(r, i-> evalf(L/2/i/Pi)):
P1:= Matrix(r,r):
P2:= LA:-DiagonalMatrix(P20):
P3:= LA:-DiagonalMatrix(-P20):
P4:= Matrix(r,r):

P:= < < P00 | P01 | P02 >,
      < P10 | P1  | P2  >,
      < P20 | P3  | P4  > >;

interface(rtablesize=2*r+1):    # optionally
J:=Vector([L, L/2 $ 2*r]):      # Matrix([[...]]) would also work here

E:=DiagonalMatrix(J);

X:=  Vector[row](2*r+1,symbol=a);
U:=Vector[row](2*r+1,symbol=b);

X0:= Vector[row](2*r+1,[1]);
G:=Vector[row](2*r+1,[1]);
C:=simplify(X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P);

Z := Matrix(5, 5, {(1, 1) = 1., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 0., (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 0., (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 0., (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 0.})

Dtau := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1., (2, 3) = 0, (2, 4) = 0., (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1., (3, 4) = 0, (3, 5) = 0., (4, 1) = 0, (4, 2) = -0., (4, 3) = -0., (4, 4) = 1., (4, 5) = 0, (5, 1) = 0, (5, 2) = -0., (5, 3) = -0., (5, 4) = 0, (5, 5) = 1.})

P := Matrix(5, 5, {(1, 1) = 1/2, (1, 2) = 0, (1, 3) = 0, (1, 4) = -.318309886100000, (1, 5) = -.159154943000000, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = .1591549430, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 0.7957747152e-1, (4, 1) = .1591549430, (4, 2) = -.159154943000000, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (5, 1) = 0.7957747152e-1, (5, 2) = 0, (5, 3) = -0.795774715200000e-1, (5, 4) = 0, (5, 5) = 0})

E := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1/2, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1/2, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 1/2, (4, 5) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 1/2})

X := Vector[row](5, {(1) = a[1], (2) = a[2], (3) = a[3], (4) = a[4], (5) = a[5]})

U := Vector[row](5, {(1) = b[1], (2) = b[2], (3) = b[3], (4) = b[4], (5) = b[5]})

X0 := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

G := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

C := Vector[row](5, {(1) = 1.500000000*a[1]-2.-.1591549430*a[4]-0.7957747152e-1*a[5]-.5000000000*b[1]-.1591549430*b[4]-0.7957747152e-1*b[5], (2) = a[2]+.1591549430*a[4]+.1591549430*b[4], (3) = a[3]+0.7957747152e-1*a[5]+0.7957747152e-1*b[5], (4) = a[4]+.3183098861*a[1]-.1591549430*a[2]+.3183098861*b[1]-.1591549430*b[2], (5) = a[5]+.1591549430*a[1]-0.7957747152e-1*a[3]+.1591549430*b[1]-0.7957747152e-1*b[3]})

(1)

J:=X.E.Transpose(X)+U.E.Transpose(U);

J := a[1]^2+(1/2)*(a[2]^2)+(1/2)*(a[3]^2)+(1/2)*(a[4]^2)+(1/2)*(a[5]^2)+b[1]^2+(1/2)*(b[2]^2)+(1/2)*(b[3]^2)+(1/2)*(b[4]^2)+(1/2)*(b[5]^2)

(2)

Minimize(J,{C=0});






Error, (in Optimization:-NLPSolve) invalid arguments

 

#XP:=-.015+X[1]+add(X[l+1]*f1(l)+X[r+l+1]*f2(l), l= 1..r):
#plot([XP,T1], t= 0..1);#,legend= "Solution Of x(t) with r=50"):

 

 

 

 

 

 

Download work1.mwswork1.mws

Good afternoon sir.

 

I request your kind support to the above cited query.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Good afternoon sir.

 

I request your kind suggestion to the above cited query.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Hi all

In matlab software we have a command namely fmincon which minimizes any linear/nonlinear algebric equations subject to linear/nonlinear constraints.

Now my question is that: what is the same command in maple?or how can we minimize linear/nonlinear function subject to linear/nonlinear constraints in maple?

thanks a lot

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Slides of the presentation at the VII Workshop Fast Computational and Applied Mathematics developed in graduate school at the National University of Trujillo. January 8, 2014.

 

Visualización_Geomét.pdf

 

L. Araujo C.

I work entitled Point Exeter made ​​for Fast VII workshop on applied and computational mathematics 2014 Trujillo Peru.

  Punto_de_Exeter.mw   (version in spanish)

Atte.

Lenin Araujo Castillo

Physics Pure

Computer Science

 

Thanks to the community through Maplesoft Mapleprimes that could develop in Computational Mathematics Achievement Day at our institution.

(Presentation in Spain a month ago focusing on educational and research use)

ODEs and PDEs

 

"Computer algebra systems have evolved into powerful environments for studying and solving differential equations."

 

Some polemical questions:

 

Can a Computer Algebra system compute numerical ODE solutions as fast as for instance C or FORTRAN code ?

   

Can a computer really be more useful than a good book for finding exact ODE and PDE solutions ?

   

Aren't these computer algebra environments more like a black-box approach to the problem ?

   

Can we really study  the "differential equations" behind a problem using Computer Algebra as we would do by hand?

   

Is there something fundamentally relevant regarding ODEs and PDEs that we can only do with a computer?

   

___________________________________________________________________________

 

Special Functions

 

"Special functions, their inter-relation and representations become alive within a computer"

Conversions between mathematical functions

   

The FunctionAdvisor project

   

Differential Polynomial Form for non-polynomial expressions

   

___________________________________________________________________________

Conclusion

 

"Research and education are two things highly inter-related"

 

  

-  Constructive learning processes are mostly based on the building of logic structures by testing conjectures and analyzing the results. The proportion between success (the conjecture solves the problem) and frustration plays an important role as an emotional (+/-) accelerating factor for the whole "learning & discovery" process.

-  The simultaneous analysis of a greater number of results turns apparent the underlying logic structures more rapidly, and can strengthen the intuition unexpectedly.

  

- Genuine learning processes only happen when the individual who is learning participates actively.

  

- Inspiration is a function of intuition, excitement and fun, transformed into results through heavy exploration.

Symbolic computation can be used with these purposes, perhaps as the most important educational and research tool available at present.

___________________________________________________________________________

 

 

Santander_talk.pdf   Download Santander_talk.mw

 

Edgardo S. Cheb-Terrab
Physics, Maplesoft

1 2 Page 1 of 2