Items tagged with mathematics mathematics Tagged Items Feed

Hi all;

Hope all of you  be in good health

I want to construct a special function b_{nm}(t) like:

with piecewise command i did it but the result is incorrect.

any one can help me to do it?

Best wishes

 

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all 

I have the following segment of maple program which belongs to time delay systems dynamic. here C=X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P, is a matrix(vector) which comes from reordering the system terms and my goal is to minimizing J:=X.E.Transpose(X)+U.E.Transpose(U), subject to constraint C=0, but i don't know how to do so.

I will be so grateful if anyone can guide me

best wishes

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department


restart:
with(Optimization):
with(LinearAlgebra):
macro(LA= LinearAlgebra):
L:=1:  r:=2:  tau:= 1:
interface(rtablesize= 2*r+1):

Z:= Matrix(
     2*r+1, 2*r+1,
     [tau,
      seq(evalf((L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L)), iz= 2..r+1),
      seq(evalf((L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L))), iz= r+2..2*r+1)
      ],
     scan= columns,
     datatype= float[8]
);
                        
Dtau00:= < 1 >:
Dtau01:= Vector[row](r):
Dtau02:= Vector[row](r):
Dtau10:= Vector(r):
Dtau20:= Vector(r):

Dtau1:= LA:-DiagonalMatrix([seq(evalf(cos(2*i*Pi*tau/L)), i= 1..r)]):
Dtau2:= LA:-DiagonalMatrix([seq(evalf(sin(2*i*Pi*tau/L)), i= 1..r)]):
Dtau3:= -Dtau2:
Dtau4:= copy(Dtau1):

Dtau:= < < Dtau00 | Dtau01 | Dtau02 >,
         < Dtau10 | Dtau1  | Dtau2  >,
         < Dtau20 | Dtau3  | Dtau4  > >;
 
P00:= < L/2 >:
P01:= Vector[row](r):
P02:= Vector[row](r, j-> evalf(-L/j/Pi), datatype= float[8]):
P10:= Vector(r):
P20:= Vector(r, i-> evalf(L/2/i/Pi)):
P1:= Matrix(r,r):
P2:= LA:-DiagonalMatrix(P20):
P3:= LA:-DiagonalMatrix(-P20):
P4:= Matrix(r,r):

P:= < < P00 | P01 | P02 >,
      < P10 | P1  | P2  >,
      < P20 | P3  | P4  > >;

interface(rtablesize=2*r+1):    # optionally
J:=Vector([L, L/2 $ 2*r]):      # Matrix([[...]]) would also work here

E:=DiagonalMatrix(J);

X:=  Vector[row](2*r+1,symbol=a);
U:=Vector[row](2*r+1,symbol=b);

X0:= Vector[row](2*r+1,[1]);
G:=Vector[row](2*r+1,[1]);
C:=simplify(X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P);

Z := Matrix(5, 5, {(1, 1) = 1., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 0., (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 0., (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 0., (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 0.})

Dtau := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1., (2, 3) = 0, (2, 4) = 0., (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1., (3, 4) = 0, (3, 5) = 0., (4, 1) = 0, (4, 2) = -0., (4, 3) = -0., (4, 4) = 1., (4, 5) = 0, (5, 1) = 0, (5, 2) = -0., (5, 3) = -0., (5, 4) = 0, (5, 5) = 1.})

P := Matrix(5, 5, {(1, 1) = 1/2, (1, 2) = 0, (1, 3) = 0, (1, 4) = -.318309886100000, (1, 5) = -.159154943000000, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = .1591549430, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 0.7957747152e-1, (4, 1) = .1591549430, (4, 2) = -.159154943000000, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (5, 1) = 0.7957747152e-1, (5, 2) = 0, (5, 3) = -0.795774715200000e-1, (5, 4) = 0, (5, 5) = 0})

E := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1/2, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1/2, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 1/2, (4, 5) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 1/2})

X := Vector[row](5, {(1) = a[1], (2) = a[2], (3) = a[3], (4) = a[4], (5) = a[5]})

U := Vector[row](5, {(1) = b[1], (2) = b[2], (3) = b[3], (4) = b[4], (5) = b[5]})

X0 := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

G := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

C := Vector[row](5, {(1) = 1.500000000*a[1]-2.-.1591549430*a[4]-0.7957747152e-1*a[5]-.5000000000*b[1]-.1591549430*b[4]-0.7957747152e-1*b[5], (2) = a[2]+.1591549430*a[4]+.1591549430*b[4], (3) = a[3]+0.7957747152e-1*a[5]+0.7957747152e-1*b[5], (4) = a[4]+.3183098861*a[1]-.1591549430*a[2]+.3183098861*b[1]-.1591549430*b[2], (5) = a[5]+.1591549430*a[1]-0.7957747152e-1*a[3]+.1591549430*b[1]-0.7957747152e-1*b[3]})

(1)

J:=X.E.Transpose(X)+U.E.Transpose(U);

J := a[1]^2+(1/2)*(a[2]^2)+(1/2)*(a[3]^2)+(1/2)*(a[4]^2)+(1/2)*(a[5]^2)+b[1]^2+(1/2)*(b[2]^2)+(1/2)*(b[3]^2)+(1/2)*(b[4]^2)+(1/2)*(b[5]^2)

(2)

Minimize(J,{C=0});






Error, (in Optimization:-NLPSolve) invalid arguments

 

#XP:=-.015+X[1]+add(X[l+1]*f1(l)+X[r+l+1]*f2(l), l= 1..r):
#plot([XP,T1], t= 0..1);#,legend= "Solution Of x(t) with r=50"):

 

 

 

 

 

 

Download work1.mwswork1.mws

Good afternoon sir.

 

I request your kind support to the above cited query.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Good afternoon sir.

 

I request your kind suggestion to the above cited query.

 

 

With thanks & Regards

 

M.Anand

Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Hi all

In matlab software we have a command namely fmincon which minimizes any linear/nonlinear algebric equations subject to linear/nonlinear constraints.

Now my question is that: what is the same command in maple?or how can we minimize linear/nonlinear function subject to linear/nonlinear constraints in maple?

thanks a lot

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Slides of the presentation at the VII Workshop Fast Computational and Applied Mathematics developed in graduate school at the National University of Trujillo. January 8, 2014.

 

Visualización_Geomét.pdf

 

L. Araujo C.

I work entitled Point Exeter made ​​for Fast VII workshop on applied and computational mathematics 2014 Trujillo Peru.

  Punto_de_Exeter.mw   (version in spanish)

Atte.

Lenin Araujo Castillo

Physics Pure

Computer Science

 

Thanks to the community through Maplesoft Mapleprimes that could develop in Computational Mathematics Achievement Day at our institution.

(Presentation in Spain a month ago focusing on educational and research use)

ODEs and PDEs

 

"Computer algebra systems have evolved into powerful environments for studying and solving differential equations."

 

Some polemical questions:

 

Can a Computer Algebra system compute numerical ODE solutions as fast as for instance C or FORTRAN code ?

   

Can a computer really be more useful than a good book for finding exact ODE and PDE solutions ?

   

Aren't these computer algebra environments more like a black-box approach to the problem ?

   

Can we really study  the "differential equations" behind a problem using Computer Algebra as we would do by hand?

   

Is there something fundamentally relevant regarding ODEs and PDEs that we can only do with a computer?

   

___________________________________________________________________________

 

Special Functions

 

"Special functions, their inter-relation and representations become alive within a computer"

Conversions between mathematical functions

   

The FunctionAdvisor project

   

Differential Polynomial Form for non-polynomial expressions

   

___________________________________________________________________________

Conclusion

 

"Research and education are two things highly inter-related"

 

  

-  Constructive learning processes are mostly based on the building of logic structures by testing conjectures and analyzing the results. The proportion between success (the conjecture solves the problem) and frustration plays an important role as an emotional (+/-) accelerating factor for the whole "learning & discovery" process.

-  The simultaneous analysis of a greater number of results turns apparent the underlying logic structures more rapidly, and can strengthen the intuition unexpectedly.

  

- Genuine learning processes only happen when the individual who is learning participates actively.

  

- Inspiration is a function of intuition, excitement and fun, transformed into results through heavy exploration.

Symbolic computation can be used with these purposes, perhaps as the most important educational and research tool available at present.

___________________________________________________________________________

 

 

Santander_talk.pdf   Download Santander_talk.mw

 

Edgardo S. Cheb-Terrab
Physics, Maplesoft

Dear Maple Users

I am mainly in favor of the new rules concerning subscripts. Using Ctrl+-- (double underscore) it is pretty straight forward to get a literal subscript and it displays much better in the palette Variables than was the case i Maple 16. Also the purple coloring of a variable containing a literal subscript makes sense, because it can be distinguished from the usual subscript (now Ctrl+shift+-). Good that you can remove the coloring in the View Menu (Atomic Variables...

Why isn't android maple for open mw files? In the world peoples are using android mobile or android tablet. Maplesoft please build a software for maple and use it on android. It will moneymaker for maplesoft. Please build it. Thanks.

A set of three taped video interviews with famous physicist and mathematician Cornelius Lanczos (1893-1974) has been made available online by the University of Manchester.

Page 1 of 1