Items tagged with numeric numeric Tagged Items Feed

Good day,

What scheme does midrich method is using in solving BVP?

Thanks.

I am a problem with solve differential equation, please help me: THANKS 

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);

dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, numeric, output = array([0.]));

              Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead

****************FORMAT TWO ********************************************************

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);
dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, method = bvp[midrich], output = array([0.]));
%;
                                   Error, (in dsolve) too many levels of recursion

I DONT KNOW ABOUT THIS ERROR

PLEASE HELP ME

THANKS A LOT

 

Hello everyone,

i'm trying to simulate a diffusion problem. It contains two connected regions in which a species is diffusing at different speeds. In one region (zeta) one boundary is set to be constant whereas in the other region (c) there is some oscillation at the boundary.The code i try to use is as follows:

sys1 := [diff(c(x, t), t) = gDiffusion*10^5*diff(c(x, t), x$2), diff(zeta(x, t), t) = KDiffusion*10^6*diff(zeta(x, t), x$2)]

pds := pdsolve(sys1, IBC, numeric, time = t, range = 0 .. 3000, spacestep = 3)

However the main problem are my boundary conditions:

IBC := {c(0, t) = 0, c(x > 0, 0) = 0, zeta(0, t) = .4, zeta(x > 0, 0) = .4, (D[1](c))(3000, t) = sin((1/100)*t), (D[1](zeta))(0, t) = 0}

Like this it principally works (however it is apparently ill-posed).

Now what i do like is that the two equations are coupled at x=2000 with the condition that c(2000,t)=zeta(2000,t). This however i dont seem to be able to implement.

I appreciate your comments

Goon

hello

we have an exam next week and I want to know

how I can write (fordo) in maple for numerical integration

in different methods such as trapezoid , newton cotes and so on.

thanks

Is it possible to solve piecewise differential equations directly instead of separating the pieces and solving them separately.

like for example if i have a two dimensional function f(t,x) whose dynamics is as follows:

dynamics:= piecewise((t,x) in D1, pde1, pde2); where D1 is some region in (t,x)-plane

now is it possible to solve this system with one pde call numerically?

pde(dynamics, boundary conditions, numeric); doesnot work

Pleaz i nees help i have probleme withe singularity

restart; with(plots)

Paramétres

 

NULL

``

mb := 5;

5

 

2

 

(1/3)*a*b^3

 

0.4906250000e-1*d

 

.2

 

.4

 

1.2

 

.43

 

9.81

 

1

 

5

 

.5

 

1

(1.1)

``

``

Equation suivant x :

 

``

eq1 := (mp+mb)*(diff(x(t), `$`(t, 2)))+mp*(d+l)*(diff(theta(t), `$`(t, 2)))+mp*l*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2*theta(t)+l*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t)))+1000*Am*g*sin(omega*t-k*x(t))*(1+theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(x(t), t), t))+1.2*(diff(diff(theta(t), t), t))+.4*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2*theta(t)+.4*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t))+11772.000*sin(.43*t-x(t))*(1+theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sinh(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(2.1)

``

Equation suivant z :

 

``

eq2 := (mp+mb)*(diff(z(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(theta(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2+l*(diff(theta(t), t)+diff(alpha(t), t))^2)-g*(mp+mb)+1000*g*a*z(t)+1000*g*a*b*(1/2)+1000*Am*g*sin(omega*t-k*x(t))*(1-theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sin(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(z(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(theta(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2+.4*(diff(theta(t), t)+diff(alpha(t), t))^2+2383.830+4905.000*z(t)+11772.000*sin(.43*t-x(t))*(1-theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sin(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(3.1)

``

Equation suivant y :

 

``

eq3 := mp*(d+l)*(diff(x(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(z(t), `$`(t, 2)))+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l)*(diff(theta(t), `$`(t, 2)))+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*(diff(alpha(t), `$`(t, 2)))-mp*alpha(t)*(l*d*(diff(theta(t), t))^2-l*d*(diff(theta(t), t)+diff(alpha(t), t))^2)+mp*g*l*(alpha(t)+theta(t))+mp*g*d*theta(t)+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)*z(t)+1000*g*a(theta(t))^9*(1/12)+(1000*g*a*b^2*(1/4))*theta(t)-1000*Am*g*sin(omega*t-k*x(t))*((z(t)-(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)+1000*Am*g*sin(omega*t-k*x(t))*((z(t)+(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)-(1000*g*z(t)*(1/2)+1000*g*b*(1/4))*(2*a*x(t)+a*b*theta(t))+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)^2*z(t)+(1000*g*a^3*(1/12))*theta(t)+(1000*g*a*b^2*(1/4))*theta(t)^3+(k*theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))))-k*theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))-cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))+cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t)))))/k^2 = 0;

1.2*(diff(diff(x(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(z(t), t), t))+.9062916667*(diff(diff(theta(t), t), t))+(0.9962500000e-1+.16*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-2*alpha(t)*(0.8e-1*(diff(theta(t), t))^2-0.8e-1*(diff(theta(t), t)+diff(alpha(t), t))^2)+3.924*alpha(t)+1340.209500*theta(t)+9810.000*theta(t)*z(t)^2+4905.000*theta(t)*z(t)+1.596679687-11772.000*sin(.43*t-x(t))*(-(z(t)-.2500000000*theta(t)+1/2)*sinh(-11/2-z(t)+.2500000000*theta(t))-cosh(-11/2-z(t)+.2500000000*theta(t)))/cosh(5)+11772.000*sin(.43*t-x(t))*((z(t)+.2500000000*theta(t)+1/2)*sinh(11/2+z(t)+.2500000000*theta(t))-cosh(11/2+z(t)+.2500000000*theta(t)))/cosh(5)-(4905.00*z(t)+2452.50)*(1.0*x(t)+.5*theta(t))+4905.000*theta(t)^2*z(t)+1226.250*theta(t)^3-theta(t)*(x(t)-.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t)))+theta(t)*(x(t)+.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))-cosh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))+cosh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t))) = 0

(4.1)

NULL

``

Equation suivant y

 

``

eq4 := mp*l*(diff(x(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(z(t), `$`(t, 2)))+(d*l*mp+l^2*mp+Ip)*(diff(theta(t), `$`(t, 2)))+(l^2*mp+Ip)*(diff(alpha(t), `$`(t, 2)))-9.81*mp*l*(alpha(t)+theta(t))-l*d*mp*(diff(theta(t), `$`(t, 1)))^2*alpha(t) = 0;

.4*(diff(diff(x(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+.2596250000*(diff(diff(theta(t), t), t))+0.9962500000e-1*(diff(diff(alpha(t), t), t))-3.924*alpha(t)-3.924*theta(t)-.16*(diff(theta(t), t))^2*alpha(t) = 0

(5.1)

``

Résolution :

 

NULL

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(6.1)

if theta(t) <> 0 then
 solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0):
 odeplot(solution, [[t, x(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, z(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, theta(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, alpha(t)]], t = 0 .. 100, thickness = 2);
 #odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..100, thickness=2);
 end ;

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.14822202628077855e-4, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = 17.65307013401197, (3) = .0, (4) = -7.093237546136753, (5) = .0, (6) = .20723671453704962, (7) = .0, (8) = -340.5471428571427}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

Warning, cannot evaluate the solution further right of .33009777, probably a singularity

 

 

 

``

``


thank you !

Download DL.mw

Hi,

I would like a plot of the solution of this differential equation : diff(phi(x),x,x)=phi(x)*(Ep(x)-E) with for example Ep(x)=(1-exp-(x-2))^2 and E=0.5

 

So :

>restart;with(plots); xith(DEtools);

>Ep:=x->(1-exp-(x-2))^2;E:=0.5;

>sol:=dsolve({eq,phi(o)=0,D(phi)(0)=0},type=numeric,range=0..10);

>odeplot(sol);

but nothing appear in the plot except axes

Thanks for answer

 Hi all,

i want to solve a system of differential equations in maple with "dsolve, numeric",

i got th error message: "Error, (in f) unable to store in Matrix ..."

what is the problem?

thanks a lot

Hy all.

I want to solve this equation, with„dd” as numerical result. What do I do wrong? Thanks. Nico

restart;
TTot := 70;
TC := 17;
GM := .26;
QMax := 870;
V := 3600*GM*QMax*TTot;
eq := V = int(QMax*exp((-t+TC)/dd)*(1+(t-TC)/TC)^(TC/dd), t = 0 .. TTot);
fsolve(eq, dd);

Hello guys ...

I used a numerically method to solve couple differential equation that it has some boundary conditions. My problem is that some range of answers has 50% error . Do you know things for improving our answers in maple ?

my problem is :

a*Φ''''(x)+b*Φ''(x)+c*Φ(x)+d*Ψ''(x)+e*Ψ(x):=0

d*Φ''(x)+e*Φ(x)+j*Ψ''(x)+h*Ψ(x):=0

suggestion method by preben Alsholm:

a,b,c,d,e,j,h are constants.suppose some numbers for these constants . I used this code:


VR22:=0.1178*diff(phi(x),x,x,x,x)-0.2167*diff(phi(x),x,x)+0.0156*diff(psi(x),x,x)+0.2852*phi(x)+0.0804*psi(x);
VS22:=0.3668*diff(psi(x),x,x)-0.0156*diff(phi(x),x,x)-0.8043*psi(x)-0.80400*phi(x);
bok:=evalf(dsolve({VR22=0,VS22=0}));

PHI,PSI:=op(subs(bok,[phi(x),psi(x)]));
Eqs:={eval(PHI,x=1.366)=1,eval(diff(PHI,x),x=1.366)=0,eval(PHI,x=-1.366)=1,eval(diff(PHI,x),x=-1.366)=0,
eval(PSI,x=1.366)=1,eval(PSI,x=1.366)=1};
C:=fsolve(Eqs,indets(%,name));
eval(bok,C);
SOL:=fnormal(evalc(%));


I used digits for my code at the first of writting.

please help me ... what should i do?

hello evreybody i have these Error :

 

restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;h:=3;a:=30;b:=15;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

 

3

 

30

 

15

(1)

A:=(1000*g)/2;

4905.00

(2)

v:=1/tan(theta(t));

1/tan(theta(t))

(3)

s:=(1000*F*g*sin(omega*t-k*x(t)))/k*sinh(k*h);

35337.21492*sin(.43*t-0.2001014429e-1*x(t))

(4)

n:=49.97465213;

49.97465213

(5)

Z:=z(t)-a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)-15*sin(theta(t))+(15/2)*cos(theta(t))

(6)

Za:=z(t)+a/2*sin(theta(t))+b/2*cos(theta(t));

z(t)+15*sin(theta(t))+(15/2)*cos(theta(t))

(7)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*(Z)^2+s*(sinh(k*(h+Z))-sinh(k*h))-A*(Za)^2-s*(sinh(k*(h+Za))-sinh(k*h))+A*(Za^2-Z^2)-s*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.6006649417e-1)-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))) = 0

(8)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))-A*tan(theta(t))*(Z)^2-s*tan(theta(t))*(sinh(k*(h+Z))-sin(k*h))+A*tan(theta(t))*(Za)^2+s*tan(theta(t))*(sinh(k*(h+Za))-sin(k*h))+A*v*(Za^2-Z^2)+s*v*(sinh(k*(h+Za))-sinh(k*(h+Z)))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))-4905.00*tan(theta(t))*(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2-35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*tan(theta(t))*(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*tan(theta(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-0.5999438456e-1)+4905.00*(-(z(t)-15*sin(theta(t))+(15/2)*cos(theta(t)))^2+(z(t)+15*sin(theta(t))+(15/2)*cos(theta(t)))^2)/tan(theta(t))+35337.21492*sin(.43*t-0.2001014429e-1*x(t))*(sinh(0.6003043287e-1+0.2001014429e-1*z(t)+.3001521644*sin(theta(t))+.1500760822*cos(theta(t)))-sinh(0.6003043287e-1+0.2001014429e-1*z(t)-.3001521644*sin(theta(t))+.1500760822*cos(theta(t))))/tan(theta(t)) = 0

(9)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(10)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(11)

CI:= x(0)=0,z(0)=3,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 3, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(12)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = undefined, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 1, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = undefined, (3) = .0, (4) = undefined, (5) = .0, (6) = undefined, (7) = .0, (8) = undefined}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = 3.0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(1352*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+540.04*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[4] := (10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))+8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)-75503444196167.489249*sin(Y[1]+Y[3])-820689610827907.49184*sin(Y[3])-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])+730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[6] := -(10541323.3536*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-7796.8368*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-1352*(7796.8368+5400.40*cos(Y[1]))^2*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])+730134.08*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])+540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-540.04*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-291643.2016*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))-291643.2016*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))+291643.2016*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))*cos(Y[1]+Y[3])+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3]))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])-4905.00*tan(Y[3])*(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*tan(Y[3])*(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*tan(Y[3])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.5999438456e-1)+4905.00*(-(Y[7]-15*sin(Y[3])+(15/2)*cos(Y[3]))^2+(Y[7]+15*sin(Y[3])+(15/2)*cos(Y[3]))^2)/tan(Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3])))/tan(Y[3]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-0.6006649417e-1)-35337.21492*sin(.43*X-0.2001014429e-1*Y[5])*(sinh(0.6003043287e-1+0.2001014429e-1*Y[7]+.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))-sinh(0.6003043287e-1+0.2001014429e-1*Y[7]-.3001521644*sin(Y[3])+.1500760822*cos(Y[3]))))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3])))/(2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2+1460268.16*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 3.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(13)

``

#odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

odeplot(solution,[[t,x(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,z(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..100, thickness=2);

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 

 

Download fffffffff_INFINI.mw

please help 
thank you !

Hi,

I need to solve systems of numerical equations. I encountered a problem, where one of the parameters (tau[p3]) become FREE, see Maple worksheet attached.

That was clearly not expected.

I spent about 40 mintues to inspect what the problem is, eventually, I find that fsolve works perfectly.

Though fsolve would be the "first" choice for solving floating point problems. I really dont see why the simple "solve" syntax can not work. It is acting strange. And why is *tau[p3]*  FREE, not the others?

 

Could this be a bug? Or maybe is just WRONG to use solve?

 

Casper

solve-fsolve.mw

 

 

I'm using Maple 12 to solve a system of differential equations numerically. I first define my system as "sys1" and then use the command:

sol1 := dsolve(sys1, numeric, output = listprocedure, range = 0 .. 2000)

I'm using output=listprocedure because that's what the Maple's Help says if I want to use individual solutions. So my differential equation system has 8 solutions, and I label them a1(t) through a8(t). Now after solving the system I want to be able to evaluate, e.g., a1(t) at t=100.

I then follow the Maple's Help by defining:

f1(t):=eval(a1(t),sol1)

But then if I do:

f1(100)

I don't get the expected numerical value. Instead I get a1(100) as the result.

What I managed to do however was to plot f1(t) with the following command:

plot(f1(t),0..2000)

So it seems that I did it partially right. However according to the Maple's Help I should be able to extract numerical values with f1(100). 

I'd appreciate any suggestions!

I saw the expression:

proc(a::array(1, mumeric))

the decration of a is array(a, numeric).

But, I can't find still now the expression of array(a, numeric) in HELP in maple.

In the term of array, it is written that it takes as arguments indexfcn, bounds, list.

as in  array( indexfcn, bounds, list).

1 in array(1, mumeric)) is bounds, and probably numeric in array might mean each terms of the array such as (1,2,3)

has to take the property of being numeric. But, it is not written in the term of array in the HELP of Maple.

Where can I find that syntax of array of array(1, numeric)?

 

Thanks in advance.

 

taro 

 

 

 

 

How can I solve raychaudhuri equations numerically using GRtensor?

1 2 3 4 5 6 7 Last Page 1 of 13