Items tagged with numeric numeric Tagged Items Feed

i want to plot two difrent graph in one diagram.. anyone how to do it?

restart; with(plots); n := .2; B := .5; Ec := 2.0; Pr := 1.0; N := .5; l := 1; rho := .5; c := 1; T := .5; T1 := .5; c1 := .2; c2 := .2; Gr := .5; blt := 5;

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+l*B*H(eta)*(F(eta)-(diff(f(eta), eta)))+Gr*theta(eta)-Mn*(diff(f(eta), eta)) = 0;

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;


Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;
                 
Eq5 := diff(theta(eta), eta, eta)+Pr*((diff(theta(eta), eta))*f(eta)-2*(diff(f(eta), eta))*theta(eta))+N*Pr*(theta1(eta)-theta(eta))/(rho*c*T)+N*Pr*Ec*(F(eta)-(diff(f(eta), eta)))^2/(rho*T1) = 0;

Eq6 := 2*F(eta)*theta1(eta)+G(eta)*(diff(theta1(eta), eta))+c1*(theta1(eta)-theta(eta))/(c*c2*T) = 0;

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, F(blt) = 0, G(blt) = -f(blt), H(blt) = n, theta(0) = 1, theta(blt) = 0, theta1(blt) = 0;

L := [0, 1, 2];

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, Mn = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta1(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YP || k := rhs(R[5]); YR || k := rhs(R[6]); YQ || k := rhs(R[7]); YA || k := rhs(R[8]); YB || k := rhs(R[10]) end do;

plot([Y || (1 .. 3)], 0 .. 10, labels = [eta, (D(f))(eta)]);

 

this comands will comeout to diffrent graph in two diagram.. but i want two graph in one diagram.. any one know how to do it.. beside that.. i want to know how to insert arrow in diagram..

The Maple command

int(exp(-z^2*sin(z)^2), z = 0 .. infinity, numeric, epsilon = 0.1e-1);
outputs
                          2.835068335

However, I am not sure if the answer is correct.

Dear all,

I would like to solve the Fredholm Integral equation, using numerical method.
This is my code.

there is a problem with subs, does not working here.
# Then, we obtain from (9) the coeficient A[n] and B[n].

Then I woulk like to recompute (2), and then compute (1).
# Puting x=m*h, in (1), how can we generate a linear Matrix from (1).

 

Fred.mw

Thanks

i am trying to solve 6 ODE with boundary condition


restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


Download hydro.mw

restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


then i get this error

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

i dont know where i need to change after view it one by one..

Download hydro.mw

Hi, everyone!

I need help.

There are a system of 2 pde's: 

diff(Y(x, t), x$2) = exp(-2*x*b)*(A(x, t)-Y(x, t)), diff(A(x, t), t) = exp(-2*x*b)*(Y(x, t)-A(x, t)) 

and initial and boundary conditions: 

A(x, 0) = 0, Y(0, t) = 0.1, (D[1](Y))(0, t) = 0. 

Goal: 
For each b = 0, 0.05, 0.1. 
1)to plot 3-d  Y(x,t): 0<=x<=20,0<=t<=7. 
2)to plot  Y(x,4). 

Are there any methods with no finite-difference mesh?


I realized the  methods such as  pds1 := pdsolve(sys, ibc, numeric, time = t, range = 0 .. 7)  can't help me:

Error, (in pdsolve/numeric/match_PDEs_BCs) cannot handle systems with multiple PDE describing the time dependence of the same dependent variable, or having no time dependence 

I found something, that can solve my system analytically: 
pds := pdsolve(sys), where sys - my system without initial and boundary conditions. At the end of the output: huge monster, consisted of symbols and numbers :) And I couldn't affiliate init-bound conditions to it.

I use Maple 13. 

i am solving 4 ODE with boundary condition..

> restart;
> with*plots;

 

then i got this error..

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

i dont know where i need to change.. could you help me..

 

 

 

I am having trouble printing out a limit cylce on maple 16.  I have the attached file and if anybody could look at it and perhaps help me out it would be greatly appreciated.  The first limit cycle is supposed to look somewhat like the second one.  I'v tried many different things but nothing seems to be working.  an explenation would also be nice too.  if the file does not open correctly also let me know. thank you very much.  

 Math_4710_Hilbert_16.mw

Hi all

 

Please, I'd like to clarify some basic points about performing computations in Maple 18. Up to now I have been doing some numeric calcs using matrices normally composed of 10 to 15 columns and 200 to 600 rows.

 

When doing the calcs with a matrix of ~200 rows, it is just ok but as the number of rows increase the calculation speed reduces significantly.

 

The data contained in each row is calculated within a loop cycle (i.e.: for i from 1 to 200 do ......).

 

The number of rows is controlled by a slider so when I drag the slider the calcs are automatically updated and the results shown graphically.

 

As I said it is too slow so I don't know if I should be looking into the option of doing calcs symbolically first? However you can't use symbolic notation when working with matrices. I still got a lot of calcs to do but prefer not to continue as it will only get slower so better to see if I can optimise speed.

 

Any comment is trully appreciated.

 

Regards

Cesar

Hi,

What is the reason/Why: 

 

Error, (in dsolve/numeric/bvp) unable to achieve requested accuracy of 0.1e-5 with maximum 128 point mesh (was able to get 0.66e-1), consider increasing `maxmesh` or using larger `abserr`

Thanks for the help :)

I'm trying to plot the direction field of the second order differential equation x''=x'-cos(x) using dfieldplot: 

> with(DEtools); with(plots);
> f1 := (x, y) options operator, arrow; diff(x(t), t)-cos(x(t)) end proc;
/ d \
(x, y) -> |--- x(t)| - cos(x(t))
\ dt /
> dfieldplot([diff(x(t), t) = y(t), diff(y(t), t) = f1(x(t), y(t))], [x(t), y(t)], t = -2 .. 2, x = -2 .. 2, y = -2 .. 2);
Error, (in DEtools/dfieldplot) cannot produce plot, non-autonomous DE(s) require initial conditions.
>

The error I'm getting says I need initial conditions, but I wasn't provided with any. Is there another way to plot this? Sorry if this is dumb question, but I've only ever plotted first order equations.

Dear All, I need your help to plot the numerical solution. many thanks.

The variable t in [0,T], x in [0,1], b in [0,2].

Difference finie for waves equation is :

pde:=diff(u(x, y,t), t$2) = c^2*(diff(u(x, y,t),x$2)+diff(u(x,y,t),y$2));

i: according to x, j according to y, and k according to t.

u[i,j,k+1]=2*u[i,j,k]-u[i,j,k-1]+(c*dt/dx)^2*(u[i-1,j,k]-2*u[i,j,k]+u[i+1,j,k])+ (c*dt/dy)^2*(u[i,j-1,k]-2*u[i,j,k]+u[i,j+1,k])

 

Boundary condition: u(t=0)=1, diff(u(x,y,t),t=0)=0, and the normal derivative on the boundary of Omega =0.

How can solve this problem and plot the numerical solution.

 

 

 

int(BesselJ(2, r*k)*BesselJ(1, 1500*k), k = 0 .. infinity);

(of course, calculated numerically) against r=0..40 ?

PS. It is possible in Mathematica 9.0.1.0 .

Hi.

Please, I need a code in maple for adaptative setp size control for runge Kutta.

Thank you.

hi all.
i have a system of ODE's including 9 set of coupled OED's . 

i have  converted second deravaties to dd2 , in other words : diff(a[i](t),t,t)=dd2[i](t) . i =1..9 :

and i have set these 9 equations in form of vibrational equations such :  (M.V22)[i]+(K(t).V(t))[i]+P(t)[i] = eq[i] , where M is coefficient Matrix of second  derivatives , V22 is Vector of second derivaties , for example V22[1] = diff(a[1](t),t,t) , and  P(t) is the numeric part of equations ( they are pure number and do not contain any symbolic function ) and K(t).V(t) is the remaining part of equations such that : (K(t).V(t))[i] = eq[i] - (M.V22)[i] - P(t)[i]  , and V(t) are vector of a[i](t)'s which V(t)[1] = a[1](t) ,

i have used step by step time integration method (of an ebook which i have attachted that part of ebook here), when i set time step of solving process to h=0.01 , i can solve this system up to time one second or more, but when i choose h=0.001 or smaller, the answer diverges after 350 steps . i do not know whether the problem is in my ODS system, or maple can not handle this ?the answer about the time t=0.3 are the same in both steps, but after that, the one with stpe time h=0.001 diverges. my friend has solved this in mathematica without any problem, could any body help me ?! it is urgent for me to solve this problem,thnx everybody.


ebook.pdf  step_=_0.001.mw  step_=_0.01.mw 

Dear collegues

I wrote the following code

 


restart:
Digits := 15;
a[k]:=0;
b[k]:=7.47;
a[mu]:=39.11;
b[mu]:=533.9;
mu[bf]:=9.93/10000;
k[bf]:=0.597;
ro[p]:=3880 ;
ro[bf]:= 998.2;
c[p]:= 773;
c[bf]:= 4182;
#mu[bf]:=1;
Gr[phi]:=0; Gr[T]:=0;
#dp:=0.1;
Ree:=1;
Pr:=1;
Nbt:=cc*NBTT+(1-cc^2)*6;

#######################
slip:=0.1;         ####
NBTT:=2;           ####
lambda:=0.1;       ####
phi_avg:=0.02;    ####
#######################


eq1:=diff( (1+a[mu]*phi(eta)+b[mu]*phi(eta)^2)*diff(u(eta),eta),eta)+dp/mu[bf]+Gr[T]*T(eta)-Gr[phi]*phi(eta);
eq2:=diff((1+a[k]*phi(eta)+b[k]*phi(eta)^2)*diff(T(eta),eta),eta)+lambda*T(eta)/k[bf];
eq3:=diff(phi(eta),eta)+1/Nbt*diff(T(eta),eta);
Q:=proc(pp2,fi0) local res,F0,F1,F2,a,INT0,INT10;
global Q1,Q2;
print(pp2,fi0);
if not type([pp2,fi0],list(numeric)) then return 'procname(_passed)' end if:
res := dsolve({subs(dp=pp2,eq1)=0,eq2=0,eq3=0,u(0)=slip*D(u)(0),u(1)=-slip*D(u)(1),D(T)(0)=0,D(T)(1)=1,phi(0)=fi0}, numeric,output=listprocedure,continuation=cc);
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)])):
INT0:=evalf(Int(F0(eta),eta=0..1));
INT10:=evalf(Int(F0(eta)*F1(eta),eta=0..1));
a[1]:=evalf(Int(F0(eta),eta=0..1))-Ree*Pr;;
a[2]:=INT10/INT0-phi_avg;
Q1(_passed):=a[1];
Q2(_passed):=a[2];
if type(procname,indexed) then a[op(procname)] else a[1],a[2] end if
end proc;
Q1:=proc(pp2,fi0) Q[1](_passed) end proc;
Q2:=proc(pp2,fi0) Q[2](_passed) end proc;
Optimization:-LSSolve([Q1,Q2],initialpoint=[0.3,0.0007]);




se:=%[2];
res2 := dsolve({subs(dp=se[1],eq1)=0,eq2=0,eq3=0,u(0)=slip*D(u)(0),u(1)=-slip*D(u)(1),D(T)(0)=0,D(T)(1)=1,phi(0)=se[2]}, numeric,output=listprocedure,continuation=cc);
G0,G1,G2:=op(subs(res2,[u(eta),phi(eta),T(eta)])):
TTb:=evalf(Int(G0(eta)*G2(eta)*(G1(eta)*ro[p]*c[p]+(1-G1(eta))*ro[bf]*c[bf] ),eta=0..1))/evalf(Int(G0(eta)*(G1(eta)*ro[p]*c[p]+(1-G1(eta))*ro[bf]*c[bf] ),eta=0..1));
with(plots):
odeplot(res2,[[eta,phi(eta)/phi_avg]],0..1);
odeplot(res2,[[eta,T(eta)/TTb]],0..1);
odeplot(res2,[[eta,u(eta)/(Ree*Pr)]],0..1);

res2(1);
Nuu:=(1/TTb);
1/((1+a[k]*G1(1)+b[k]*G1(1)^2)/(1+a[k]*phi_avg+b[k]*phi_avg^2));
(1/TTb)*(((1+a[k]*G1(1)+b[k]*G1(1)^2)/(1+a[k]*phi_avg+b[k]*phi_avg^2)));
>

I want to run the code for the value of NBTT in the range of 0.2 to 10. this code gave the results in the range of 4-10 easily. So, I used the continuation which improve the range of the results between 2-10. However, I coudnt gave the results when 0.2<NBTT<2. Would you please help me in this situation.

Also, It is to be said that the values of phi should be positive. in some ranges, I can see that phi(1) is negative. Can I place a condition in which the values phi restricted to be positive.

Thanks for your attentions in advance

Amir

1 2 3 4 5 6 7 Last Page 1 of 11