Hi everyone, I'm working a problem

Given a dog and a man. At t=0, the position of the man and his dog is (0,0) and (0,h), respectively. Then, the man start moving along Ox with constant speed vm. The dog keep running toward its master with constant speed vd. Describe the movement of the dog?

Therefore, let say the position of the dog is (f1(x),f2(x)), I wrote these:

restart;

with(plots);

MD := proc (h, vm, vd) local x, y, ode, ics, sol;

ode := {(diff(f2(t), t))*(vm*t-f1(t))+(diff(f1(t), t))*f2(t), diff(f2(t), t) = -sqrt(vd^2-(diff(f1(t), t))^2)};

ics := {f1(0) = h, f2(0) = 0};

sol := dsolve(ode union ics);

x := unapply(eval(f1(t), sol), t);

y := unapply(eval(f2(t), sol), t);

plot([x(t), y(t), t = 0 .. 10], scaling = constrained) end proc;

MD(10, 1, 5);

However, "sol" is returned NULL, which means the equation has no solution. I supposed I completed the motion part of the problem correctly. Please help me or point out an another method