Items tagged with parameters parameters Tagged Items Feed

Hi,

I need to build a multibody model in MapleSim 6.4 in which with few global parameters I can describe all the other parameters. In other words the final user will enter this few parameters, that are coordinates of specific points, and then the model will calculate all the relative distances on the base of those coordinates.

The problem is that if I apply trigonometric function and square root (like in the screenshot) the model is not calculating any value. Is it possible to make those calculculations?

 

this is the model (don't worry about the nonsense plots, it's because it's not ultimated):

DWS.msim

 

 

Thanks.

 

Hi everyone,

I have to create a double wishbone suspesione model that can be edited by different users, only introducing some reference point values (called Hard Points). So I need some tool that, in some way, passes from the entered reference point values to the actual values of the bodyframes link. 

I found an already done model (from this link) that seems to be perfect to me because contains an attached Maple document that does exactly what I need working on the base of symbolic parameters applied to the MapleSim model. Now my problem is that I need to deeply change the model and so having the possibility to change the parameter set and insert for example nex parameters. But when I try to do that some problems come out with the Maple document: the syntax of the nex parameter set is different from the default (in the sense of already built in the model I downloaded) one and there are some syntax errors. Below I'll put a screenshot of the error.

 

under the XData code line, you can also see the syntax of one of the parameters that is very long and complicated: below I'll insert another image from which it can be seen the syntax with the original parameter set.

Now if you another idea for solving the initial problem, that would be great! Instead do you have an idea on how to fix the problem with the downloaded model? In my opinion there is a different MapleSim version problem, in the sense that could be thatn the model I downloaded has been done in another MapleSim version in which the parameter set syntax was different.

Hello,

In my model, it seems that I have parameters which are not evaluated.

Indeed, I'm not sure that the parameters defined with relations as you can see in the printscreen are evaluated.

 

One point which helps me to debug my model is to follow the evaluation of the construction of my model with the 3D visualization.

Questions :
1) How can I do to be sure that my parameters are evaluated ?

2) Is it possible to launch the update of the 3D visualization even if I still have some bugs in my model ?

Thank you for help.

Hello,

In a subsystem, i defined parameters like this in the "parameters" area :

 

In the "diagram" area, the parameters are not updated because i see this panel :

 

Do you know why the parameters are not updated (possibly only on visualization) ? And if yes, how i can do to visualize in this last panel the value of the parameters updated ?

Thanks a lot for your help

Hi,

 

I want to calculate a new position (X,Y,Z) for a cartesian model with 3 points (dX,dY,dZ) but  I got a problem, my point is a parameters, so I can't change it in the simulation in real time with a Input signal on the components. Does It exist a solution for convert a parameters to a variable to get a Input signal?

Exemple of my calcul:

eq:= [x(t)= dx+sin(dy/dz), y(t)=dy+20,z(t)=dz]

 

Thanks!

Hello,

In my model, in order to better follow a analytical study, i would like to make some calculations with my paramters.

For example, I have defined :

xa=1

ya=2

R=sqrt(xa²+ya²)

I would define R in the parameters area so as to use it for some definitions in the definition of body (i use especially maplesim for multibody systems.)

How is it possible to define parameters thanks to relations ?

Pleaz i nees help i have probleme withe singularity

restart; with(plots)

Paramétres

 

NULL

``

mb := 5;

5

 

2

 

(1/3)*a*b^3

 

0.4906250000e-1*d

 

.2

 

.4

 

1.2

 

.43

 

9.81

 

1

 

5

 

.5

 

1

(1.1)

``

``

Equation suivant x :

 

``

eq1 := (mp+mb)*(diff(x(t), `$`(t, 2)))+mp*(d+l)*(diff(theta(t), `$`(t, 2)))+mp*l*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2*theta(t)+l*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t)))+1000*Am*g*sin(omega*t-k*x(t))*(1+theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(x(t), t), t))+1.2*(diff(diff(theta(t), t), t))+.4*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2*theta(t)+.4*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t))+11772.000*sin(.43*t-x(t))*(1+theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sinh(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(2.1)

``

Equation suivant z :

 

``

eq2 := (mp+mb)*(diff(z(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(theta(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2+l*(diff(theta(t), t)+diff(alpha(t), t))^2)-g*(mp+mb)+1000*g*a*z(t)+1000*g*a*b*(1/2)+1000*Am*g*sin(omega*t-k*x(t))*(1-theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sin(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(z(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(theta(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2+.4*(diff(theta(t), t)+diff(alpha(t), t))^2+2383.830+4905.000*z(t)+11772.000*sin(.43*t-x(t))*(1-theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sin(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(3.1)

``

Equation suivant y :

 

``

eq3 := mp*(d+l)*(diff(x(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(z(t), `$`(t, 2)))+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l)*(diff(theta(t), `$`(t, 2)))+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*(diff(alpha(t), `$`(t, 2)))-mp*alpha(t)*(l*d*(diff(theta(t), t))^2-l*d*(diff(theta(t), t)+diff(alpha(t), t))^2)+mp*g*l*(alpha(t)+theta(t))+mp*g*d*theta(t)+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)*z(t)+1000*g*a(theta(t))^9*(1/12)+(1000*g*a*b^2*(1/4))*theta(t)-1000*Am*g*sin(omega*t-k*x(t))*((z(t)-(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)+1000*Am*g*sin(omega*t-k*x(t))*((z(t)+(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)-(1000*g*z(t)*(1/2)+1000*g*b*(1/4))*(2*a*x(t)+a*b*theta(t))+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)^2*z(t)+(1000*g*a^3*(1/12))*theta(t)+(1000*g*a*b^2*(1/4))*theta(t)^3+(k*theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))))-k*theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))-cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))+cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t)))))/k^2 = 0;

1.2*(diff(diff(x(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(z(t), t), t))+.9062916667*(diff(diff(theta(t), t), t))+(0.9962500000e-1+.16*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-2*alpha(t)*(0.8e-1*(diff(theta(t), t))^2-0.8e-1*(diff(theta(t), t)+diff(alpha(t), t))^2)+3.924*alpha(t)+1340.209500*theta(t)+9810.000*theta(t)*z(t)^2+4905.000*theta(t)*z(t)+1.596679687-11772.000*sin(.43*t-x(t))*(-(z(t)-.2500000000*theta(t)+1/2)*sinh(-11/2-z(t)+.2500000000*theta(t))-cosh(-11/2-z(t)+.2500000000*theta(t)))/cosh(5)+11772.000*sin(.43*t-x(t))*((z(t)+.2500000000*theta(t)+1/2)*sinh(11/2+z(t)+.2500000000*theta(t))-cosh(11/2+z(t)+.2500000000*theta(t)))/cosh(5)-(4905.00*z(t)+2452.50)*(1.0*x(t)+.5*theta(t))+4905.000*theta(t)^2*z(t)+1226.250*theta(t)^3-theta(t)*(x(t)-.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t)))+theta(t)*(x(t)+.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))-cosh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))+cosh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t))) = 0

(4.1)

NULL

``

Equation suivant y

 

``

eq4 := mp*l*(diff(x(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(z(t), `$`(t, 2)))+(d*l*mp+l^2*mp+Ip)*(diff(theta(t), `$`(t, 2)))+(l^2*mp+Ip)*(diff(alpha(t), `$`(t, 2)))-9.81*mp*l*(alpha(t)+theta(t))-l*d*mp*(diff(theta(t), `$`(t, 1)))^2*alpha(t) = 0;

.4*(diff(diff(x(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+.2596250000*(diff(diff(theta(t), t), t))+0.9962500000e-1*(diff(diff(alpha(t), t), t))-3.924*alpha(t)-3.924*theta(t)-.16*(diff(theta(t), t))^2*alpha(t) = 0

(5.1)

``

Résolution :

 

NULL

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(6.1)

if theta(t) <> 0 then
 solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0):
 odeplot(solution, [[t, x(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, z(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, theta(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, alpha(t)]], t = 0 .. 100, thickness = 2);
 #odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..100, thickness=2);
 end ;

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.14822202628077855e-4, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = 17.65307013401197, (3) = .0, (4) = -7.093237546136753, (5) = .0, (6) = .20723671453704962, (7) = .0, (8) = -340.5471428571427}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

Warning, cannot evaluate the solution further right of .33009777, probably a singularity

 

 

 

``

``


thank you !

Download DL.mw

Hello,

I'm quite new to Maple and I have a serious problem when I'm trying to solve this system of equations for (a,b,p,v,u,g):

1) alpha[1]= v a u (1- b)
2) alpha[2]= v a ub
3) alpha[3]= v (1-a)=v-va
4) alpha[11]= 1/(2) auv (-1+b) (-b u p+b a u p+b g+p u-u p a) 
5) alpha[22]= 1/(2) a u v b (-b u p+b a u p+b g-g)
6) alpha[33]= 1/(2)(a- 1)apv
7) alpha[12]= -a u v b(pu-pua-g - bup +baup +bg)
8) alpha[13]= (a-1) (b-1)ap vu
9) alpha[23]= (1-a) a p v ub

I tried this command:

solve({v*(1-a) = alpha[3], a*u*v*b = alpha[2], v*a*u*(1-b) = alpha[1], (1/2*(-1+a))*a*p*v = alpha[33], (-1+a)*(-1+b)*a*p*v*u = alpha[13], (1-a)*a*p*v*u*b = alpha[23], (1/2)*a*u*v*b*(-b*u*p+b*a*u*p+b*g-g) = alpha[22], -a*u*v*b*(p*u-u*p*a-g-b*u*p+b*a*u*p+b*g) = alpha[12], (1/2)*a*u*v*(-1+b)*(-b*u*p+b*a*u*p+b*g+p*u-u*p*a) = alpha[11]}, {a, b, g, p, u, v}, 'parametric' = 'full', 'parameters' = {alpha[1], alpha[2], alpha[3], alpha[11], alpha[12], alpha[13], alpha[22], alpha[23], alpha[33]})

 but the Maple output is [ ]. I can find a solution manually but I don't understand why I cannot do it with Maple. It's very important that I find a solution as I have a much more complicated system to solve in a similar manner.

Thank you very much for your help!!

Elena

 

 Hello everybody, I need help please   

 


restart:with(plots):

mb:=765; mp:=587;Ib:=76.3*10^3;Ip:=7.3*10^3; l:=0.92; d:=10; F:=-1.2; omega:=0.43;g:=9.81;ly:=3;k:=0.02001014429;

765

 

587

 

76300.0

 

7300.0

 

.92

 

10

 

-1.2

 

.43

 

9.81

 

3

 

0.2001014429e-1

(1)

A:=168913.8672;

168913.8672

(2)

s:=0.0666666666667;

0.666666666667e-1

(3)

n:=49.97465213;

49.97465213

(4)

eq1:=(mp+mb)*diff(x(t),t$2)+mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(theta(t),t$2)+mp*l*cos(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*sin(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*sin(alpha(t)+theta(t)))+A*2*(s*sinh(k*ly+k*ly)*sin(omega*t-k*x(t)))=0;

1352*(diff(diff(x(t), t), t))+587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(theta(t), t), t))+540.04*cos(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*sin(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*sin(alpha(t)+theta(t))+2710.493534*sin(.43*t-0.2001014429e-1*x(t)) = 0

(5)

eq2:=(mp+mb)*diff(z(t),t$2)-mp*d*(sin(theta(t)+alpha(t))+sin(theta(t)))*diff(theta(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(alpha(t),t$2)+mp*(d*diff(theta(t),t)^2*cos(theta(t))+l*(diff(theta(t),t)+diff(alpha(t),t))^2*cos(alpha(t)+theta(t)))+9.81*(mp+mb)+1000*g*z(t)*15.3*30+A*cosh(k*ly+k*z(t))*n*(cos(omega*t-k*15)-cos(omega*t+k*15))=0;

1352*(diff(diff(z(t), t), t))-5870*(sin(alpha(t)+theta(t))+sin(theta(t)))*(diff(diff(theta(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+5870*(diff(theta(t), t))^2*cos(theta(t))+540.04*(diff(theta(t), t)+diff(alpha(t), t))^2*cos(alpha(t)+theta(t))+13263.12+4502790.000*z(t)+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*z(t))*(cos(.43*t-.3001521644)-cos(.43*t+.3001521644)) = 0

(6)

eq3:=mp*(d*cos(theta(t))+l*cos(alpha(t)+theta(t)))*diff(x(t),t$2)-mp*(l*sin(theta(t)+alpha(t))+d*sin(theta(t)))*diff(z(t),t$2)+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(alpha(t),t$2)-mp*sin(alpha(t))*(l*d*diff(alpha(t),t)^2-l*d*(diff(alpha(t),t)+diff(theta(t),t))^2)+mp*9.81*l*sin(alpha(t)+theta(t))+mp*9.81*d*sin(theta(t))=0;

587*(10*cos(theta(t))+.92*cos(alpha(t)+theta(t)))*(diff(diff(x(t), t), t))-587*(.92*sin(alpha(t)+theta(t))+10*sin(theta(t)))*(diff(diff(z(t), t), t))+(142796.8368+10800.80*cos(alpha(t)))*(diff(diff(theta(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-587*sin(alpha(t))*(9.20*(diff(alpha(t), t))^2-9.20*(diff(theta(t), t)+diff(alpha(t), t))^2)+5297.7924*sin(alpha(t)+theta(t))+57584.70*sin(theta(t)) = 0

(7)

eq4:=mp*l*cos(alpha(t)+theta(t))*diff(x(t),t$2)-mp*l*sin(alpha(t)+theta(t))*diff(z(t),t$2)+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*diff(theta(t),t$2)+(Ip+mp*l^2)*diff(alpha(t),t$2)-mp*9.81*l*sin(alpha(t)+theta(t))+l*d*mp*diff(theta(t),t$1)^2*sin(alpha(t))=0;

540.04*cos(alpha(t)+theta(t))*(diff(diff(x(t), t), t))-540.04*sin(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+(7796.8368+5400.40*cos(alpha(t)))*(diff(diff(theta(t), t), t))+7796.8368*(diff(diff(alpha(t), t), t))-5297.7924*sin(alpha(t)+theta(t))+5400.40*(diff(theta(t), t))^2*sin(alpha(t)) = 0

(8)

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(9)

solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=100000);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.5145421769461311e-3, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 100000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = -.0, (5) = .0, (6) = .0, (7) = .0, (8) = -9.809999999999999}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := (540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))-1352*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+1827904*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-730134.08*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[4] := -(291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-8365847205177.4464*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+75503444196167.489249*sin(Y[1]+Y[3])+820689610827907.49184*sin(Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-394301608.5632*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1827904*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-730134.08*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))+730134.08*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[6] := (540.04*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-730134.08*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+730134.08*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-7796.8368*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))+10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))-291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*sin(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))-1352*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-10541323.3536*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(142796.8368+10800.80*cos(Y[1]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[8] := -(291643.2016*cos(Y[1]+Y[3])^2*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*cos(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1080.08*cos(Y[1]+Y[3])*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*cos(Y[1]+Y[3])^2*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))+730134.08*sin(Y[1]+Y[3])*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(142796.8368+10800.80*cos(Y[1]))-7796.8368*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+10541323.3536*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(142796.8368+10800.80*cos(Y[1]))-1352*(5870*Y[4]^2*cos(Y[3])+540.04*(Y[4]+Y[2])^2*cos(Y[1]+Y[3])+13263.12+4502790.000*Y[7]+8441411.753*cosh(0.6003043287e-1+0.2001014429e-1*Y[7])*(cos(.43*X-.3001521644)-cos(.43*X+.3001521644)))*(7796.8368+5400.40*cos(Y[1]))^2+540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-291643.2016*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*sin(Y[1]+Y[3])*cos(Y[1]+Y[3])*(142796.8368+10800.80*cos(Y[1]))+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*sin(Y[1]+Y[3])-540.04*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*sin(Y[1]+Y[3])-10541323.3536*(-587*sin(Y[1])*(9.20*Y[2]^2-9.20*(Y[4]+Y[2])^2)+5297.7924*sin(Y[1]+Y[3])+57584.70*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+1352*(-5297.7924*sin(Y[1]+Y[3])+5400.40*Y[4]^2*sin(Y[1]))*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+7796.8368*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-540.04*(5870*Y[4]^2*sin(Y[3])+540.04*(Y[4]+Y[2])^2*sin(Y[1]+Y[3])+2710.493534*sin(.43*X-0.2001014429e-1*Y[5]))*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3])))/(1460268.16*cos(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))-394301608.5632*cos(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))+291643.2016*cos(Y[1]+Y[3])^2*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))+291643.2016*cos(Y[1]+Y[3])*sin(Y[1]+Y[3])*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-10541323.3536*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))*cos(Y[1]+Y[3])*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])+291643.2016*(5870*cos(Y[3])+540.04*cos(Y[1]+Y[3]))^2*sin(Y[1]+Y[3])^2+2035121836544224.7506+153931588575265.01376*cos(Y[1])-10541323.3536*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-1827904*(7796.8368+5400.40*cos(Y[1]))^2-730134.08*(7796.8368+5400.40*cos(Y[1]))*(-540.04*sin(Y[1]+Y[3])-5870*sin(Y[3]))*sin(Y[1]+Y[3])-730134.08*sin(Y[1]+Y[3])*(7796.8368+5400.40*cos(Y[1]))*(-5870*sin(Y[1]+Y[3])-5870*sin(Y[3]))-394301608.5632*sin(Y[1]+Y[3])^2*(142796.8368+10800.80*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(10)

``

odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,x(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,z(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,alpha(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

 

odeplot(solution,[[t,theta(t)]], t=0..1000, thickness=2);

Warning, cannot evaluate the solution further right of 46.041076, maxfun limit exceeded (see ?dsolve,maxfun for details)

 

 

thank you 

 I have a complex set of mechanical linkages and components, and I am trying to create a feedback control system for trajectory-tracking with the end-effector. They system is driven by a set of prismatic joints (representing ideal series-elastic actuators). At this stage I am simply trying to establish the control parameters and the required forces to achieve desired positions/velocities in the workspace, and have not yet inserted any realistic actuator characteristics.

An open-loop solution can be found using translational position control on the prismatic joints, this is no problem. However to close the loop properly, I need to convert the system to use a differential input, such as a velocity driver. At this point everything becomes very finicky and highly dependent on initial conditions. Generally Maplesim gives up, claiming that no solution can be found. Due to the complexity of the system, there is no way for me to guess a priori the appropriate initial conditions of all the joints and linkages. I was wondering if anybody had any tips for either pre-determining the initial parameters, or alternatively for relaxing the solver in some way to allow for a wider exploration of possible solutions. Or any other ideas!

So far: I have tried setting up an open loop position-driven system with the same trajectories and using Maple to read all the initial conditions, then transferring them as guesses to my closed-loop system. But this has not worked. As a temporary workaround I am using position drivers on the SEAs, which are in turn driven by a velocity controller (with an integrator term). However this is suboptimal. Any help would be much appreciated!

Hi,

I solve laplace equation in a square. All the lines of my code is okay.

Please just look to the last part of my code titled procedure:

When I run my code without (last funciton f #f := (x,y) -> 0;) see last lines to find "f". It's runing, there is no problem. But when I put add f, there is an error. Many think  for any help.

Procedure
Using the previous suty in section stencil we can write the procedure to solve the Laplace equation in [0,1]*[0,1] with the boundary condition Neumann conditions on the vertical boundary and Dirichlet boundary condition on the horizontal baoundary. In our study we will use the same stepsize h in x and y direction.

PoissonSolve:=proc(N,_f)
local Z,i,h,y,x,sys,w,f,sol,j,u,Data;
# define basic grid parameters
Z := i -> (1/(N+1))*i;
x[0] = Z(0),x[N+1] = Z(N+1),y[0] = Z(0),y[N+1] = Z(N+1);
 h := evalf(Z(1)-Z(0));
# Fix the boundary data and the source matrix
for i from 0 to N+1 do:
    # Neumann boundary condition
     u[N+1,i] :=  u[N,i] ;    
     u[0,i] := u[1,i];
     # Dirichlet boundary condition
     u[i,0] := 0;
     u[i,N+1] := 0;
   od:
   f := Array(0..N+1,0..N+1,[seq([seq(evalf(_f(Z(i),Z(j))),i=0..N+1)],j=0..N+1)],datatype=float);
# Write down the system of equations to solve and solve them
     sys := [seq(seq(Stencil(h,i,j,u,f),i=1..N),j=1..N)];
  w := [seq(seq(u[i,j],i=1..N),j=1..N)];
  sol := LinearSolve(GenerateMatrix(sys,w));
   # parse the solution vector sol back into "matrix" form
   for i from 1 to N do:
     for j from 1 to N do:
        u[i,j] := sol[(j-1)*N+i]:
     od:
   od:
# generate a 3D plot of the solution using the surfdata command
   Data := [seq([seq([Z(i),Z(j),u[i,j]],i=0..N+1)],j=0..N+1)]:
surfdata(Data,axes=boxed,labels=[`x`,`y`,`u(x,y)`],shading=zhue,style=patchcontour);
end proc:



Here is an example of the output when the source function is set to zero
                                 f(x, y) = 0
; i.e., when  reduces down to Laplace's equation:
#f := (x,y) -> 0;
#PoissonSolve(10,f);

 

 

Question8.mw

I could not find a way to do this in Maple looking at http://www.maplesoft.com/support/help/Maple/view.aspx?path=parameter_classes

and I see that Maple is missing from http://rosettacode.org/wiki/Named_parameters

Is it possible to call a Maple proc using named parameters? Here is an example of what this looks like from a small Ada example from the above link:

procedure Foo (Arg_1 : Integer; Arg_2 : Float := 0.0);
Foo (Arg_2 => 0.0, Arg_1 => 1);

This is very useful for proc with many arguments, and it also makes the code much
more clear and less change in using the wrong value for the wrong parameter.

In Maple notation, this can be like

foo:=proc(arg1::integer,arg2::float) ..... end proc;
foo(arg2=>10,arg1=>200);

(This editor is so bad, can't someone fix it?)

A large procedure I made caused me some problems. I finally found the source of the problem.
There seems to be some interaction between the end of parameters marker, $, and the elementwise operation ~.

Consider these 3 versions of essentially the same procedure:

restart;
Q1:=proc(Var::list,$) local n;
  n:=nops(Var);
  print(Var,n);
  proc(var::list)
       subs(Var=~[seq(1..n)],var); #Elementwise
  end proc;
end proc:
Q1([x,y]); #Doesn't work : "invalid expression"
Q2:=proc(Var::list,$) local n;
  n:=nops(Var);
  print(Var,n);
  proc(var::list)
      subs(zip(`=`,Var,[seq(1..n)]),var); # zip
  end proc;
end proc:
Q2([x,y]); #No problem
Q3:=proc(Var::list) local n; #No end of parameters marker $
  n:=nops(Var);
  print(Var,n);
  proc(var::list)
       subs(Var=~[seq(1..n)],var); # Elementwise
  end proc;
end proc:
Q3([x,y]); # No problem
lprint(Q3([x,y])); #Curious output involving ` $`
#A fourth procedure in which the output is not a procedure works:
Q4:=proc(Var::list,$) local n;
  n:=nops(Var);
  print(Var,n);
  subs(Var=~[seq(1..n)],Var)
end proc:
Q4([x,y]);

Does anybody have any comments? Is it a bug?

Hell

I write this code and didn't work , I have some erorrs as

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)
Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

also I have question " How I can change the scale of plot"

parameters := [z = 0, Omega = 2.2758, tau = 13.8, T2 = 200, omega0 = 1, r = .7071, s = 2.2758, H = 1.05457173*10^(-34), omega = .5, k = 1666666.667, Delta = 1.7758]

 

sys1 := {diff(u(t), t) = s*v(t)-u(t)/T2, diff(v(t), t) = -s*u(t)-2*Omega*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(kz-`&omega;t`)*w(t)-v(t)/T2, diff(w(t), t) = 2*Omega*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(kz-`&omega;t`)*v(t)}; ICs1 := {u(-20) = 0, v(-20) = 0, w(-20) = -1}

 

ans1 := dsolve(`union`(eval(sys1, parameters), ICs1), numeric, output = listprocedure); plots:-odeplot(ans1, [[t, u(t)], [t, v(t)], [t, w(t)]], t = -20 .. 20, legend = [w, v, u])

 

U := eval(u(t), ans1); F := eval(((-2*10^33*Omega*H*r*U(t))*(1/omega0^2))*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(kz-`&omega;t`), parameters)

 

plot(F, t = -20 .. 20)

Hi,

I m trying to substitute numerical values to an expression having assumed parameters, like m should be integer, a>0, but i could not do it.

i could not attach the .m file from which i am reading my expression, but i m attaching the file in which i m reading the expression, and you can see i could not assign values to parameters.

Regards

Sunitquestion.mw

1 2 3 4 Page 1 of 4