Items tagged with pdetools

I have a problem using dchange when my variable depend on two (or more variables) and I would like to apply the chain rule.

For example, when I use the command

I would expect something like 

But I get an error saying that the number of new variables and transformation equations must be the same.

Any idea how I could solve it? 

Thanls a lot for your help.

 

I am wondering if I can use MAPLE to solve PDE set with one initial value problem for "q" and a boundary condition problem for "p". "q" need to be integrated over time, and for each time step, after updating "q", I need to solve poisson equation for "p":

diff(q(x,y,t),t)=-diff(p(x,y,t),x)*diff(q(x,y,t),y)/cos(xy)+diff(p(x,y,t),y)*diff(q(x,y,t),x)/cos(y)+b*cos(y)^2*diff(p(x,y,t),x)+F(x,y)

diff(p(x,y,t),x,x)+diff(p(x,y,t),y,y)+c(y)*p(x,y,t)=q(x,y,t)

IC: q(x,y,0)=q0(x,y)

BC: periodic in x, second type BC in y.

Many Thanks!

Wanying

 

I want to solve the following non linear PDE

SS := [diff(u(x, y, t), t)-0.625e-1*(diff(u(x, y, t), x, x)+diff(u(x, y, t), y, y))-6*(diff(u(x, y, t)*(diff(v(x, y, t), x)), x)+diff(u(x, y, t)*(diff(v(x, y, t), y)), y)) - 2*(u(x, y, t))(1-u(x, y, t))=0, diff(v(x, y, t), t)-(diff(v(x, y, t), x, x))-(diff(v(x, y, t), y, y))+16*v(x, y, t) -u(x, y, t)=0]

when i use the command

sol := pdsolve(SS, [u, v], singsol = false)

maple give the error message

Error, (in pdsolve) found the independent variables {t, x, y} also present in the names of the functions of the system []

 

HI everyone,

As can be seen from the attached file, the first three equations of Eq. (5) will render some of the other equations (and other terms) redundant. How can I obtain a simplified system automatically?

Thanks.

Pdesample.mw

Dear all

I am trying to solve system of ODEs by TWS command for traveling wave solution, but an error is showing. When I enter sinlge ODE or PDE the command does not show any error. Why it is showing error for system of ODEs ?


 

with(PDEtools, TWSolutions, declare):

with(DEtools):

Sys := {125*xi^3*(diff(f(xi), xi, xi, xi))-90*f(xi)*xi*(diff(h(xi), xi))-180*h(xi)*xi*(diff(f(xi), xi))+750*xi^2*(diff(f(xi), xi, xi))-180*f(xi)*h(xi)+830*xi*(diff(f(xi), xi))+80*f(xi)-108*(diff(h(xi), xi)), 15*f(xi)*xi*(diff(f(xi), xi))+6*f(xi)^2+10*xi*(diff(g(xi), xi))+8*g(xi)+6*(diff(f(xi), xi)) = 0, 5*f(xi)*xi*(diff(g(xi), xi))+10*g(xi)*xi*(diff(f(xi), xi))+8*f(xi)*g(xi)+10*xi*(diff(h(xi), xi))+12*h(xi)+6*(diff(g(xi), xi)) = 0}

TWSolutions(Sys)

Error, (in pdsolve/sys/info) required an indication of the solving variables for the given system

 

``


 

Download ODEs.mw

Hi, I'm trying to use Maple to construct some examples of symmetry solutions for certain nonlinear PDE's.  As a warm up, however, I'm working through the commands just for the heat equation in 3d: u[t]-u[x,x]-u[y,y]-u[z,z]=0 

I've gotten Maple to produce both determining equations for the symmetry infinitesimal generators via the DeterminingPDE command.  I've also gotten the command Infinitesimals to work too.

However, when I next use PDETools Invariants command, it correctly outputs invariants for most of the generator output of Infinitesimals EXCEPT it won't output anything for the simple rotation generators yd[x]-xd[y].  It will, however, output invariants if the rotation is between an independent and the dependent coordinate.

An example:
with(PDETools)
S:=[_xi[x]=y, _xi[y]=-x, _eta[u]=0]
Invariants(S,u(x,y))

*Above returns nothing, But if you instead have _xi[x]=x and _xi[y]=y then it returns the right invariants.

Thanks in advance!

There is an example in the help of maple, that is to solve the symmetries of the equation ut=uxx using the order "Infinitesimals".

But the result i can't understand.

I solved by hand and find  _eta[u](x, t, u)=cu+b(x,t), where b(x,t) is a solution of the ut=uxx.

While in maple, b is only two exponential function which are also the solution of ut=uxx. 

why?

thanks for your help!

Dear All

I need to reduce system of differential equation system into triangular system which I came to know can be done using Maple package "DifferentialAlgebra", but I do not know how to use this package for triangularization.

The differential system is DetSys derived from  some PDE:

 

with(PDEtools):

DepVars := [f(u(x, t)), u(x, t)]; 1; declare(f(u(x, t)), u(x, t))

[f(u(x, t)), u(x, t)]

 

f(u(x, t))*`will now be displayed as`*f

 

u(x, t)*`will now be displayed as`*u

(1)

PDE1 := diff(u(x, t), t, t)-(diff(u(x, t), x, x))-f(u) = 0

diff(diff(u(x, t), t), t)-(diff(diff(u(x, t), x), x))-f(u) = 0

(2)

G := [xi(x, t, u), tau(x, t, u), phi(x, t, u)]

[xi(x, t, u), tau(x, t, u), phi(x, t, u)]

(3)

declare(G)

phi(x, t, u)*`will now be displayed as`*phi

 

tau(x, t, u)*`will now be displayed as`*tau

 

xi(x, t, u)*`will now be displayed as`*xi

(4)

DetSys := DeterminingPDE(PDE1, G, integrabilityconditions = false)

{-2*(diff(diff(tau(x, t, u), t), u))+diff(diff(phi(x, t, u), u), u), 2*(diff(diff(tau(x, t, u), u), x))-2*(diff(diff(xi(x, t, u), t), u)), 2*(diff(diff(xi(x, t, u), u), x))-(diff(diff(phi(x, t, u), u), u)), 2*(diff(tau(x, t, u), x))-2*(diff(xi(x, t, u), t)), 2*(diff(xi(x, t, u), x))-2*(diff(tau(x, t, u), t)), diff(diff(tau(x, t, u), x), x)+2*(diff(diff(phi(x, t, u), t), u))-(diff(diff(tau(x, t, u), t), t))-3*(diff(tau(x, t, u), u))*f(u), diff(diff(xi(x, t, u), x), x)-2*(diff(diff(phi(x, t, u), u), x))-(diff(diff(xi(x, t, u), t), t))-f(u)*(diff(xi(x, t, u), u)), -(diff(diff(phi(x, t, u), x), x))+diff(diff(phi(x, t, u), t), t)-phi(x, t, u)*(diff(f(u), u))+(diff(phi(x, t, u), u))*f(u)-2*(diff(tau(x, t, u), t))*f(u), diff(diff(tau(x, t, u), u), u), diff(diff(xi(x, t, u), u), u), diff(tau(x, t, u), u), diff(xi(x, t, u), u)}

(5)

for EQ in sort([op(DetSys)], length) do EQ = 0 end do:

 

 

Download [1117]_Symmetries_determination.mw

Regards

Hello, I am using PDEtools to evaluate an equation but got system inconsistent in respect of a parameter used after the command map(pdsolve). I am afraid the result sebsequently given may not be correct, did I do something wrong?

Thanks.

 

test.mw

 

 

 

hi,

i want to compute the determining PDE system satisfied by the infinitesimals, such as the KdV equation.

but i have a problem, if i use the command

DeterminingPDE(PDE1, integrabilityconditions = false, split = false)

i can get the coefficients of independent objects, but u[t] exists. 

i want to replace u[t] by (-u[x]u-u[x,x,x]), then extract the coefficients.

but i can't collect the coefficients. 

 

my code:

with(PDEtools, DeterminingPDE, declare, diff_table, casesplit, InfinitesimalGenerator, Infinitesimals, SymmetryTest, ReducedForm, FromJet, ToJet);

declare(u(x, t));

U := diff_table(u(x, t));

PDE1 := U[]*U[x]+U[t]+U[x, x, x] = 0;

DetSys := DeterminingPDE(PDE1, integrabilityconditions = false, split = false);
detsys := FromJet(DetSys, u(x, t), differentiationnotation = diff);
pd1 := subs(U[t] = -U[]*U[x]-U[x, x, x], detsys); #u[t]->(-u[x]u-u[x,x,x])
pd2 := ToJet(pd1, [u(x, t)]);

how do i collect the coefficients?

help!

In PDEtools, suppose to I wish assign zero value to certain first order partial derivative such that higher order derivatives automatically vanish in subsequent excutions, how I can do that?

 

with(PDEtools):

alias(u = u(x, y, t))

u

(1)

Suppose we wish following derivative equal to zero,

diff(u, x) = 0

diff(u, x) = 0

(2)

If we use ":=" for value assignment we will get error. Under above assuption how can we make following derivatives zero?

diff(u, x, x); 1; diff(u, x, y); 1; diff(u, x, x, x, y)

diff(diff(u, x), x)

 

diff(diff(u, x), y)

 

diff(diff(diff(diff(u, x), x), x), y)

(3)

``

 

Download Assiging_Derivative.mw

Hello Maple primers

I am trying to do a coordinate transformation which involves a number of partial derivatives. I turned to the PDETools[dchange] to accomplish this but it will just return 0 when run through.

The problem is as such. First two functions are defined which contain a lot of "stuff". Then the forward and reverse transformations are defined between the coordinates; and finally the transformation is done.

   del_1:=Diff(Y,r1,r1)+2/r1*(Diff(Y,r1)) + Diff(Y,r2,r2)+2/r2*(Diff(Y,r2))+2*(Diff(Y,r3,r3))+4/r3*(Diff(Y,r3))+((r1^2-r2^2+r3^2)/(r1*r3))*(Diff(Y,r1,r3))+(r2^2-r1^2+r3^2)/(r2*r3)*(Diff(Y,r2,r3)):

   del_2:=Diff(Y,r1,r1)+2/r1*(Diff(Y,r1))+(r1^2-r2^2+r3^2)/(r1*r3)*Diff(Y,r1,r3)+Diff(Y,r2,r2)+2/r2*(Diff(Y,r2))+(-r1^2+r2^2+r3^2)/(r2*r3)*(Diff(Y,r2,r3))+4/r3*(Diff(Y,r3))+2*(Diff(Y,r3,r3)):

#Forward transformation

R1:=0.5*(v)+0.25*(w):
R2:=0.5*(u)+0.25*(w):
R3:=0.5*(u)+0.5*(v):

tr:={r1=R1,r2=R2,r3=R3}:

#Reverse transformation
rR1:=(-r1+r2+r3):
rR2:=(r1-r2+r3):
rR3:=2*(r1+r2-r3):

rtr:={u=rR1,v=rR2,w=rR3}:
nv:={u,v,w}:
AA:=simplify(del_1+del_2);
PDEtools[dchange](tr,AA,nv,rtr);

This will return zero. Is there something obvious I am missing here? I have used the dchange tool before in a similar manner and it has worked without issue.

Iam a newbie, just two weeks into my 30-days trial. I have been exploring the symmetry aspect of PDEtools, gone through materials in the help section but still having problem in some of my analysis. The answer to the titled question "Symmetry analysis with parameters" was really helpful but did not work out for me when the parameters are more than one. Attached is a sample question.

sample_question.mw

 

Let say I want to perform symmetry analysis of ODE, taking into account parameters.
In order to do it I must generate system of determining equations and them to split it for different cases.
But if I use PDETools, actually it gives me only 1 case (worksheet PDETools.mw is attached).
In that case, surely it is very easy to do it by hand and to determine that A=0 and A<>0 are two different cases.

But automatic procedure of PDETools seems to me that somewhere allows to divide by parameter...

Hi everyone,

I am trying to solve the equation of heat tranfer, time dependent, with particular Initial and boundary conditions but I am stuck by technical problems both in getting an analytical solution and a numerical one.

The equation

the equation.

I defined a and b numerically. domain is : and I defined surf_power numerically.

The initial condition is : , T0 defined numerically

The boundary condition is : , because it has a shperical symetry.

To me, it looks like a well posed problem. Does it look fine ?

Problem in analytical solution :

It doesn't accept the boundary condition so I only input the initial condition and it actually gives me back an expression that can be evaluated but it never does : I can't reduce it more than an expression of fourier which I can't eval. The solution :
The solution calculated in (0,0). I was hoping T0...

Are you familiar with these problems ? What would be the perfect syntax you would use to solve this ?

The numerical solution problems :

Sometimes it tells me that my boundary condition is equivalent  to 0 = 0, and I don't see why. Some other times it tells me I only gave 1 boundary/initial condition even if I wrote both. Here is what I wrote for example :

(because it kept asking me to add these two options : 'time' and 'range')

Are you familiar with these problems ? What would be the perfect syntax you would use to solve this ? I must at least have syntax problems because even if I keep reading the Help, it's been a long time since I used Maple.

Thank very much for any indication you could give me !

Simon

1 2 3 Page 1 of 3