Items tagged with pdsolve pdsolve Tagged Items Feed

hi...please help me for solve this nonlinear equations with pdsolve

thanksoffcenter2.mw

La := .25; Lb := 0.1e-1

h := 0.4e-2

rho := 7900

E := 0.200e12

nu := .3

ve := 5

g := 9.8

M := .5

Z0 := 0.1e-2

K := 5/6

C := sqrt(E/rho)

NULL

 

PDE[1] := diff(u(x, t), x, x)+(diff(w(x, t), x))*(diff(w(x, t), x, x)) = (diff(u(x, t), t, t))/C^2

diff(diff(u(x, t), x), x)+(diff(w(x, t), x))*(diff(diff(w(x, t), x), x)) = 0.3949999999e-7*(diff(diff(u(x, t), t), t))

(1)

PDE[2] := K*(diff(phi(x, t), x)+diff(w(x, t), x, x))/(2*(1+nu))+(diff(w(x, t), x))*(diff(u(x, t), x, x))+(diff(u(x, t), x))*(diff(w(x, t), x, x))+(3/2)*(diff(w(x, t), x, x))*(diff(w(x, t), x))^2 = (diff(w(x, t), t, t))/C^2

.3205128205*(diff(phi(x, t), x))+.3205128205*(diff(diff(w(x, t), x), x))+(diff(w(x, t), x))*(diff(diff(u(x, t), x), x))+(diff(u(x, t), x))*(diff(diff(w(x, t), x), x))+(3/2)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2 = 0.3949999999e-7*(diff(diff(w(x, t), t), t))

(2)

 

PDE[3] := diff(phi(x, t), x, x)-6*K*(diff(w(x, t), x)+phi(x, t))/(h^2*(1+nu)) = (diff(phi(x, t), t, t))/C^2

diff(diff(phi(x, t), x), x)-240384.6154*(diff(w(x, t), x))-240384.6154*phi(x, t) = 0.3949999999e-7*(diff(diff(phi(x, t), t), t))

(3)

 

 

#####################################

(4)

at x= La

PDE[a1] := diff(u(x, t), x)+(1/2)*(diff(w(x, t), x))^2-M*(g-(diff(u(x, t), t, t))-Z0*(diff(phi(x, t), t, t)))/(E*Lb*h) = 0

diff(u(x, t), x)+(1/2)*(diff(w(x, t), x))^2-0.6125000000e-6+0.6250000000e-7*(diff(diff(u(x, t), t), t))+0.6250000000e-10*(diff(diff(phi(x, t), t), t)) = 0

(5)

PDE[a2] := diff(phi(x, t), x)-12*M*Z0*(g-(diff(u(x, t), t, t))-Z0*(diff(phi(x, t), t, t)))/(E*Lb*h^3) = 0

diff(phi(x, t), x)-0.4593750000e-3+0.4687500000e-4*(diff(diff(u(x, t), t), t))+0.4687500000e-7*(diff(diff(phi(x, t), t), t)) = 0

(6)

PDE[a3] := w(x, t) = 0

w(x, t) = 0

(7)

NULL

############################################

``

at x=0 NULL

(8)

PDE[b1] := u(x, t) = 0 

PDE[b2] := w(x, t) = 0

PDE[b3] := diff(phi(x, t), x) = 0

diff(phi(x, t), x) = 0

(9)

################################################

at t=0 for x= [0,La]

u(x, t) = 0

u(x, t) = 0

(10)

w(x, t) = 0

w(x, t) = 0

(11)

phi(x, t) = 0

phi(x, t) = 0

(12)

diff(phi(x, t), t) = 0

diff(phi(x, t), t) = 0

(13)

diff(w(x, t), t) = 0

diff(w(x, t), t) = 0

(14)

diff(phi(x, t), t, t) = 0

diff(diff(phi(x, t), t), t) = 0

(15)

diff(w(x, t), t, t) = 0

diff(diff(w(x, t), t), t) = 0

(16)

######################################################

at t=0 for x= [0,La)

diff(u(x, t), t) = 0

diff(u(x, t), t) = 0

(17)

diff(u(x, t), t, t) = 0

diff(diff(u(x, t), t), t) = 0

(18)

###################################################

at t=0 for x=La

NULL

diff(u(x, t), t) = -ve

diff(u(x, t), t) = -5

(19)

diff(u(x, t), t, t) = g

diff(diff(u(x, t), t), t) = 9.8

(20)

NULL

NULL

 

Download offcenter2.mw

Hi

I need to solve below integro-differential equation

0.3846153846*(diff(F(x, y), y, y))+diff(F(x, y), x)-(diff(w(x), x, x))*y-(1/2)*(int(diff(F(x, y), x), y = -1 .. 1))+diff(F(x, y), x, x)-(diff(w(x), x, x, x))*y-(1/2)*(int(diff(F(x, y), x, x), y = -1 .. 1))

The solution is as follows:

(diff(w(x), x))*y-_C1*y/exp(x)-(1923076923/5000000000)*_c[2]*x*y+_C2*y+(1/6)*_c[2]*y^3+_C4*y+_F1(x)

 

The parameters _C1, _C2, c[2], C4 are functions of x, or functions of y? Or these parameters are constant numbers? 

In addition to, is it reasonable to use C *y instead of _C2*y+_C4*y ?

 

Thank you

I have the PDE u_{xx}+u_{yy} = 1 with BC: u|_{x^2+y^2=1} =0 ;

 

how to write down the command of the BC in solving this PDE?, btw can I make maple show me how to solve this PDE analytically?

 

Thanks in advance.

 

Here are the lines that I wrote so far:

pde := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 1;

ans := pdsolve(pde)

 

how to add the BC correctly to pdsolve? I am not sure how to write the condition x^2+y^2=1 and that u will get a value on this boundary.

 

hi .please help me for solve this equations.

bbb2.mw

restart; d[11] := 1; mu[11] := 1; q[311] := 1; d[33] := 1; mu[33] := 1; a[11] := 1; e[311] := 1; a[33] := 1; A := 1; g[111111] := 1; c[1111] := 1; g[113113] := 1; f[3113] := 1; beta[11] := 1; `ΔT` := 1; II := 1; L := 1

J := d[11]*(diff(Phi(x, z), x, x))+mu[11]*(diff(psi(x, z), x, x))+q[311]*(diff(w(x), x, x))+d[33]*(diff(Phi(x, z), z, z))+mu[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(1)

B := a[11]*(diff(Phi(x, z), x, x))+d[11]*(diff(psi(x, z), x, x))+e[311]*(diff(w(x), x, x))+a[33]*(diff(Phi(x, z), z, z))+d[33]*(diff(psi(x, z), z, z));

diff(diff(Phi(x, z), x), x)+diff(diff(psi(x, z), x), x)+diff(diff(w(x), x), x)+diff(diff(Phi(x, z), z), z)+diff(diff(psi(x, z), z), z)

(2)

R := A*(g[111111]*(diff(u[0](x), x, x, x, x))-c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)));

diff(diff(diff(diff(u[0](x), x), x), x), x)-(diff(diff(u[0](x), x), x))-(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z)

(3)

S := -II*g[111111]*(diff(w(x), x, x, x, x, x, x))-II*c[1111]*(diff(w(x), x, x, x, x))+A*g[113113]*(diff(w(x), x, x, x, x))-A*f[3113]*(diff(diff(Phi(x, z), z), x, x))-A*(c[1111]*(diff(u[0](x), x, x)+(1/2)*(diff((diff(w(x), x))^2, x)))+e[311]*(diff(diff(Phi(x, z), z), x))+q[311]*(diff(diff(psi(x, z), z), x)))*(diff(w(x), x))-A*(diff(w(x), x, x))*(c[1111]*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2)+e[311]*(diff(Phi(x, z), z))+q[311]*(diff(psi(x, z), z))-beta[11]*`ΔT`);

-(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))-(diff(diff(diff(Phi(x, z), x), x), z))-(diff(diff(u[0](x), x), x)+(diff(w(x), x))*(diff(diff(w(x), x), x))+diff(diff(Phi(x, z), x), z)+diff(diff(psi(x, z), x), z))*(diff(w(x), x))-(diff(diff(w(x), x), x))*(diff(u[0](x), x)+(1/2)*(diff(w(x), x))^2+diff(Phi(x, z), z)+diff(psi(x, z), z)-1)

(4)

dsys := {B, J, R, S}; BCS := {D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

{D@@2*w(0) = 0, D@@2*w(L) = 0, Phi(x = 0) = 0, Phi(x = L) = 0, Phi(z = -(1/2)*h) = 0, Phi(z = (1/2)*h) = 0, psi(x = 0) = 0, psi(x = L) = 0, psi(z = -(1/2)*h) = 0, psi(z = (1/2)*h) = 0, w(x = 0) = 0, w(x = L) = 0, u[0](x = 0) = 0, u[0](x = L) = 0, (D(w))(0) = 0, (D(w))(L) = 0, (D(u[0]))(0) = 0, (D(u[0]))(L) = 0}

(5)

dsol5 := dsolve(dsys, numeric)

Error, (in dsolve/numeric/process_input) missing differential equations and initial or boundary conditions in the first argument: dsys

 

NULL

NULL

NULL

if former equations are not solvable , please help me for another way, in which at first two equation solve..in this way in equation [J and B] assume that q[311]=e[311]=0 and dsolve perform to find Φ and  ψ

after by finding Φ and  ψ is use for detemine w and u0

please see attached file below[bbb2_2.mw]

bbb2_2.mw

Download bbb2.mw

I have the following PDE system steaming from Flash Photolysis:

pdesys := [diff(J(x, t), x) = varepsilon*J(x, t)*C(x, t), diff(C(x, t), t) = phi*varepsilon*J(x, t)*C(x, t)]

when I use pdsolve(pdesys,[J,C]) I get:

{C(x, t) = 0, J(x, t) = _F1(t)}, {C(x, t) = _F1(x)*_C1, J(x, t) = 0}

The solution appears to be either C(x,t) = 0 or J(x,t) = 0. This are the obvious solutions (0 = 0). I have the analytical solution to this PDE system where neither C(x,t) nor J(x,t) are 0.

How to solve this system in maple? Thanks.

 

Hi evrey ones in pdsolve we have these commande to use U(x,t) 

> U:= subs(pds:-value(output=listprocedure), u(x,t));

  id like to get du(x,t)/dt

i tried these  

U:= subs(pds:-value(output=listprocedure), du(x,t)/dt);  but is not work 

thank you 

 

hello , 

how i can exract value from pdsolve ,i need to use dU(x,R)/dR 

thank you 

 

restart; with(plots)

n := 1/3;

1/3

(1)

Uu := (3*n+1)*(1-R^((n+1)/n))/(n+1);

-(3/2)*R^4+3/2

(2)

eq := Uu*(diff(theta(x, R), x))-4*(diff(R*(diff(theta(x, R), R)), R))/R;

(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R

(3)

IBC := {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0};

{theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}

(4)

pds := pdsolve(eq, IBC, numeric);

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(5)

U := subs(pds:-value(output = listprocedure), theta(x, R));

proc () local tv, xv, solnproc, stype, ndsol, vals; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; Digits := trunc(evalhf(Digits)); solnproc := proc (tv, xv) local INFO, errest, nd, dvars, dary, daryt, daryx, vals, msg, i, j; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; table( [( "soln_procedures" ) = array( 1 .. 1, [( 1 ) = (18446744074366926358)  ] ) ] ) INFO := table( [( "timestep" ) = 0.500000000000000e-1, ( "IBC" ) = b, ( "spaceidx" ) = 2, ( "fdepvars" ) = [theta(x, R)], ( "dependson" ) = [{1}], ( "eqnords" ) = [[1, 2]], ( "intspace" ) = Matrix(21, 1, {(1, 1) = .0, (2, 1) = .0, (3, 1) = .0, (4, 1) = .0, (5, 1) = .0, (6, 1) = .0, (7, 1) = .0, (8, 1) = .0, (9, 1) = .0, (10, 1) = .0, (11, 1) = .0, (12, 1) = .0, (13, 1) = .0, (14, 1) = .0, (15, 1) = .0, (16, 1) = .0, (17, 1) = .0, (18, 1) = .0, (19, 1) = .0, (20, 1) = .0, (21, 1) = .0}, datatype = float[8], order = C_order), ( "solvec2" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "allocspace" ) = 21, ( "solmat_ne" ) = 0, ( "depords" ) = [[1, 2]], ( "BCS", 1 ) = {[[1, 0, 1], b[1, 0, 1]], [[1, 1, 0], b[1, 1, 0]]}, ( "spacepts" ) = 21, ( "solvec3" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "autonomous" ) = true, ( "vectorproc" ) = proc (v, vp, vpp, t, x, k, h, n, vec) local _s1, _s2, _s3, _s4, _s5, _s6, xi; _s3 := 4*k; _s4 := -3*h^2; _s5 := 2*h*k; _s6 := 2*k*h^2; vec[1] := 0; vec[n] := 0; for xi from 2 to n-1 do _s1 := -vp[xi-1]+vp[xi+1]; _s2 := vp[xi-1]-2*vp[xi]+vp[xi+1]; vec[xi] := (_s4*vp[xi]*x[xi]^5+_s2*_s3*x[xi]-_s4*vp[xi]*x[xi]+_s1*_s5)/(_s6*x[xi]) end do end proc, ( "timeidx" ) = 1, ( "extrabcs" ) = [0], ( "pts", R ) = [0, 1], ( "solvec5" ) = 0, ( "timevar" ) = x, ( "t0" ) = 0, ( "solmat_v" ) = Vector(147, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0, (43) = .0, (44) = .0, (45) = .0, (46) = .0, (47) = .0, (48) = .0, (49) = .0, (50) = .0, (51) = .0, (52) = .0, (53) = .0, (54) = .0, (55) = .0, (56) = .0, (57) = .0, (58) = .0, (59) = .0, (60) = .0, (61) = .0, (62) = .0, (63) = .0, (64) = .0, (65) = .0, (66) = .0, (67) = .0, (68) = .0, (69) = .0, (70) = .0, (71) = .0, (72) = .0, (73) = .0, (74) = .0, (75) = .0, (76) = .0, (77) = .0, (78) = .0, (79) = .0, (80) = .0, (81) = .0, (82) = .0, (83) = .0, (84) = .0, (85) = .0, (86) = .0, (87) = .0, (88) = .0, (89) = .0, (90) = .0, (91) = .0, (92) = .0, (93) = .0, (94) = .0, (95) = .0, (96) = .0, (97) = .0, (98) = .0, (99) = .0, (100) = .0, (101) = .0, (102) = .0, (103) = .0, (104) = .0, (105) = .0, (106) = .0, (107) = .0, (108) = .0, (109) = .0, (110) = .0, (111) = .0, (112) = .0, (113) = .0, (114) = .0, (115) = .0, (116) = .0, (117) = .0, (118) = .0, (119) = .0, (120) = .0, (121) = .0, (122) = .0, (123) = .0, (124) = .0, (125) = .0, (126) = .0, (127) = .0, (128) = .0, (129) = .0, (130) = .0, (131) = .0, (132) = .0, (133) = .0, (134) = .0, (135) = .0, (136) = .0, (137) = .0, (138) = .0, (139) = .0, (140) = .0, (141) = .0, (142) = .0, (143) = .0, (144) = .0, (145) = .0, (146) = .0, (147) = .0}, datatype = float[8], order = C_order, attributes = [source_rtable = (Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order))]), ( "indepvars" ) = [x, R], ( "maxords" ) = [1, 2], ( "solvec1" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "startup_only" ) = false, ( "solvec4" ) = 0, ( "explicit" ) = false, ( "solmatrix" ) = Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order), ( "depvars" ) = [theta], ( "solmat_is" ) = 0, ( "adjusted" ) = false, ( "matrixhf" ) = true, ( "norigdepvars" ) = 1, ( "stages" ) = 1, ( "theta" ) = 1/2, ( "ICS" ) = [1], ( "multidep" ) = [false, false], ( "soltimes" ) = Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]), ( "depeqn" ) = [1], ( "method" ) = theta, ( "depshift" ) = [1], ( "depdords" ) = [[[1, 2]]], ( "matrixproc" ) = proc (v, vp, vpp, t, x, k, h, n, mat) local _s1, _s2, _s3, xi; _s1 := h^2; _s2 := -(3/2)/k; _s3 := (1/2)*(8*k+3*_s1)/(k*h^2); mat[3] := -(3/2)/h; mat[4] := 2/h; mat[5] := -(1/2)/h; mat[7*n-4] := 1; for xi from 2 to n-1 do mat[7*xi-4] := _s2*x[xi]^4+_s3; mat[7*xi-5] := (h-2*x[xi])/(_s1*x[xi]); mat[7*xi-3] := -(h+2*x[xi])/(_s1*x[xi]) end do end proc, ( "solution" ) = Array(1..3, 1..21, 1..1, {(1, 1, 1) = .0, (1, 2, 1) = .0, (1, 3, 1) = .0, (1, 4, 1) = .0, (1, 5, 1) = .0, (1, 6, 1) = .0, (1, 7, 1) = .0, (1, 8, 1) = .0, (1, 9, 1) = .0, (1, 10, 1) = .0, (1, 11, 1) = .0, (1, 12, 1) = .0, (1, 13, 1) = .0, (1, 14, 1) = .0, (1, 15, 1) = .0, (1, 16, 1) = .0, (1, 17, 1) = .0, (1, 18, 1) = .0, (1, 19, 1) = .0, (1, 20, 1) = .0, (1, 21, 1) = .0, (2, 1, 1) = .0, (2, 2, 1) = .0, (2, 3, 1) = .0, (2, 4, 1) = .0, (2, 5, 1) = .0, (2, 6, 1) = .0, (2, 7, 1) = .0, (2, 8, 1) = .0, (2, 9, 1) = .0, (2, 10, 1) = .0, (2, 11, 1) = .0, (2, 12, 1) = .0, (2, 13, 1) = .0, (2, 14, 1) = .0, (2, 15, 1) = .0, (2, 16, 1) = .0, (2, 17, 1) = .0, (2, 18, 1) = .0, (2, 19, 1) = .0, (2, 20, 1) = .0, (2, 21, 1) = .0, (3, 1, 1) = .0, (3, 2, 1) = .0, (3, 3, 1) = .0, (3, 4, 1) = .0, (3, 5, 1) = .0, (3, 6, 1) = .0, (3, 7, 1) = .0, (3, 8, 1) = .0, (3, 9, 1) = .0, (3, 10, 1) = .0, (3, 11, 1) = .0, (3, 12, 1) = .0, (3, 13, 1) = .0, (3, 14, 1) = .0, (3, 15, 1) = .0, (3, 16, 1) = .0, (3, 17, 1) = .0, (3, 18, 1) = .0, (3, 19, 1) = .0, (3, 20, 1) = .0, (3, 21, 1) = .0}, datatype = float[8], order = C_order), ( "totalwidth" ) = 7, ( "rightwidth" ) = 0, ( "solmat_i2" ) = 0, ( "minspcpoints" ) = 4, ( "erroraccum" ) = true, ( "eqndep" ) = [1], ( "errorest" ) = false, ( "banded" ) = true, ( "solspace" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = 1.0}, datatype = float[8]), ( "solmat_i1" ) = 0, ( "timeadaptive" ) = false, ( "spacestep" ) = 0.500000000000000e-1, ( "initialized" ) = false, ( "vectorhf" ) = true, ( "linear" ) = true, ( "spacevar" ) = R, ( "periodic" ) = false, ( "spaceadaptive" ) = false, ( "mixed" ) = false, ( "inputargs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R, {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}], ( "bandwidth" ) = [1, 3], ( "PDEs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R], ( "leftwidth" ) = 1 ] ); if xv = "left" then return INFO["solspace"][1] elif xv = "right" then return INFO["solspace"][INFO["spacepts"]] elif tv = "start" then return INFO["t0"] elif not (type(tv, 'numeric') and type(xv, 'numeric')) then error "non-numeric input" end if; if xv < INFO["solspace"][1] or INFO["solspace"][INFO["spacepts"]] < xv then error "requested %1 value must be in the range %2..%3", INFO["spacevar"], INFO["solspace"][1], INFO["solspace"][INFO["spacepts"]] end if; dary := Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]); daryt := 0; daryx := 0; dvars := []; errest := false; nd := nops(INFO["depvars"]); if dary[nd+1] <> tv then try `pdsolve/numeric/evolve_solution`(INFO, tv) catch: msg := StringTools:-FormatMessage(lastexception[2 .. -1]); if tv < INFO["t0"] then error cat("unable to compute solution for %1<%2:
", msg), INFO["timevar"], INFO["failtime"] else error cat("unable to compute solution for %1>%2:
", msg), INFO["timevar"], INFO["failtime"] end if end try end if; if dary[nd+1] <> tv or dary[nd+2] <> xv then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["solspace"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, dary); if errest then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_t"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryt); `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_x"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryx) end if end if; dary[nd+1] := tv; dary[nd+2] := xv; if dvars = [] then [seq(dary[i], i = 1 .. INFO["norigdepvars"])] else vals := NULL; for i to nops(dvars) do j := eval(dvars[i]); try if errest then vals := vals, evalhf(j(tv, xv, dary, daryt, daryx)) else vals := vals, evalhf(j(tv, xv, dary)) end if catch: userinfo(5, `pdsolve/numeric`, `evalhf failure`); try if errest then vals := vals, j(tv, xv, dary, daryt, daryx) else vals := vals, j(tv, xv, dary) end if catch: vals := vals, undefined end try end try end do; [vals] end if end proc; stype := "1st"; if nargs = 1 then if args[1] = "left" then return solnproc(0, "left") elif args[1] = "right" then return solnproc(0, "right") elif args[1] = "start" then return solnproc("start", 0) else error "too few arguments to solution procedure" end if elif nargs = 2 then if stype = "1st" then tv := evalf(args[1]); xv := evalf(args[2]) else tv := evalf(args[2]); xv := evalf(args[1]) end if; if not (type(tv, 'numeric') and type(xv, 'numeric')) then if procname <> unknown then return ('procname')(args[1 .. nargs]) else ndsol := pointto(solnproc("soln_procedures")[1]); return ('ndsol')(args[1 .. nargs]) end if end if else error "incorrect arguments to solution procedure" end if; vals := solnproc(tv, xv); vals[1] end proc

(6)

NULL

gg := U(x, 1):

NULL

thm := int(U(x, R)*Uu, R = 0 .. 1):

 

 

NULL

 

Download U(R)_numériqueg2.mw

vz := 2*(-eta^2+1);

D_im := .22;

r0 := 1;

pde := diff(vz*Y(eta, z), z)-D_im*((diff(eta*(diff(Y(eta, z), eta)), eta))/eta+diff(Y(eta, z), `$`(z, 2)))/r0 = 0;

pde := expand(%);

ibc := [Y(1, z) = 0, (D[1](Y))(0, z) = 0, Y(eta, 0) = 1, (D[2](Y))(eta, 0) = 0];

sol := pdsolve(pde, ibc, numeric, time = z, range = 0 .. 1);

pds := sol:-value(z = 0, output = listprocedure);

sol:-plot(z = 0.1e-3, numpoints = 50, color = blue, view = 0 .. 1)

So I was trying to solve this conservation equation for the radial coordinate eta and the z coordinate being treated as time. The flow is in z direction. Now unfortunately it is diverging. Not sure why though. What am I doing wrong?

I'm trying to solve a 2nd order system of pde's with couplded BC but it gives me the following error

Error, (in pdsolve/numeric) initial/boundary conditions must be defined at one or two points for each independent variable

Here is the code

> T01 := 273; T02 := 26; L1 := .1; L2 := .2; h1 := 100; h2 := 200; k1 := 1; k2 := 2; rho1 := 1000; rho2 := 2000; c1 := 0.1e6; c2 := 0.2e6; alpha1 := 1; alpha2 := 2

> PDE := {diff(T1(x, t), t) = (diff(T1(x, t), x, x))/alpha1, diff(T2(x, t), t) = (diff(T2(x, t), x, x))/alpha2}

> IBC:={k1*(D[1](T1))(L1, t) = k2*(D[1](T2))(L1, t), T1(L1, t) = T2(L1, t), T1(x, 0) = T02, T2(x, 0) = T02, (D[1](T1))(0, t) = -h1*(T1(0, t)-T01)/k1, (D[1](T2))(L1+L2, t) = h2*(T2(L1+L2, t)-T02)/k2}

> pds := pdsolve(PDE, IBC, numeric)

Its basically a 1D heat equation in a 2 layers plate with conduction BC on both sides

i use the pdsolve to find the solutions of a system of partial differential equations,

but the result contains some indefinite integrals, how to simplify it further?

thank you

code:

eq1 := {6*(diff(_xi[t](x, t, u), u))-3*(diff(_xi[x](x, t, u), u)), 12*(diff(_xi[t](x, t, u), u, u))-6*(diff(_xi[x](x, t, u), u, u)), 2*(diff(_xi[t](x, t, u), u, u, u))-(diff(_xi[x](x, t, u), u, u, u)), diff(_eta[u](x, t, u), t)+diff(_eta[u](x, t, u), x, x, x)+(diff(_eta[u](x, t, u), x))*u, 18*(diff(_xi[t](x, t, u), x, u))+3*(diff(_eta[u](x, t, u), u, u))-9*(diff(_xi[x](x, t, u), x, u)), 6*(diff(_xi[t](x, t, u), x, x))+3*(diff(_eta[u](x, t, u), x, u))-3*(diff(_xi[x](x, t, u), x, x)), 6*(diff(_xi[t](x, t, u), x, u, u))+diff(_eta[u](x, t, u), u, u, u)-3*(diff(_xi[x](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), u))-6*(diff(_xi[x](x, t, u), u))+6*(diff(_xi[t](x, t, u), x, x, u))-6*(diff(_xi[t](x, t, u), u))*u+3*u*(diff(_xi[x](x, t, u), u))-3*(diff(_xi[x](x, t, u), x, x, u))+3*(diff(_eta[u](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), x))-6*(diff(_xi[x](x, t, u), x))+2*(diff(_xi[t](x, t, u), t))+2*(diff(_xi[t](x, t, u), x, x, x))-4*(diff(_xi[t](x, t, u), x))*u+2*(diff(_xi[x](x, t, u), x))*u+_eta[u](x, t, u)-(diff(_xi[x](x, t, u), t))+3*(diff(_eta[u](x, t, u), x, x, u))-(diff(_xi[x](x, t, u), x, x, x))};

simplify(pdsolve(eq1))

 

I read in the net that the method used in pdsolve numeric is the theta method, my question: is it the most efficient with regard to rate of convergence of the numerical solution of the PDE?

If not then why is it used as the default method?

 

Thanks.

 

I am currently working on FDM ,i have 2 coupled nonlinear pde ,i need help in solving these equation using maple code.

> restart:

> alias(f=f(tau,eta), theta=theta(tau,eta));

 

>

 

> PDE1:=S*diff(f,tau,eta)=eta^2*diff(f,eta)^2+(6*eta^2-2*f*eta)*diff(f,eta)+(6*eta^3-f*eta)*diff(f,eta,eta)-eta^4*diff(f,eta,eta,eta);

 

> PDE2:=eta^4*diff(theta,eta,eta)+2*eta^3*diff(theta,eta)-Pr*(f*eta^2*diff(theta,eta)+S*diff(theta,tau))=0;

 

hi

how pdsolve 2D couple  non linear differential equations which attached below?

thanks

2D.mw

PD1 := 12.6000000000000*(diff(U(x, theta), x, x, x, x))-7500*(diff(U(x, theta), x, x))+10.2112755389544*(diff(U(x, theta), x, x, theta, theta))+7.22165554279476*(diff(V(x, theta), x, x, x, theta))-3730.19397871630*(diff(V(x, theta), x, theta))+4.57316679658261*(diff(V(x, theta), x, theta, theta, theta))+36.0000000000000*(diff(W(x, theta), x, x, x))-9375.00*(diff(W(x, theta), x))-15.6731205946742*(diff(W(x, theta), x, theta, theta))-1947.26649812618*(diff(U(x, theta), theta, theta))+1.41357763467822*(diff(U(x, theta), theta, theta, theta, theta)):

PD2 := 3.52500000000000*(diff(V(x, theta), x, x, x, x))-3150.00*(diff(V(x, theta), x, x))+5.05278814097746*(diff(V(x, theta), theta, theta, theta, theta))-4972.65371594662*(diff(V(x, theta), theta, theta))+10.2112755389544*(diff(V(x, theta), x, x, theta, theta))+7.22165554279476*(diff(U(x, theta), x, x, x, theta))+4.57316679658261*(diff(U(x, theta), x, theta, theta, theta))-2536.53190552708*(diff(U(x, theta), x, theta))+97.2834589649212*(diff(W(x, theta), x, x, theta))+30.9917088694028*(diff(W(x, theta), theta, theta, theta))-31273.9463175575*(diff(W(x, theta), theta)):

PD3 := -0.168000000000000e-2*(diff(W(x, theta), x, x, x, x, x, x))+16.9000000000000*(diff(W(x, theta), x, x, x, x))-0.319161728473364e-2*(diff(W(x, theta), x, x, x, x, theta, theta))-37.5000000000000*(diff(W(x, theta), x, x))+796.276013656496*(diff(W(x, theta), x, x, theta, theta))-0.202111525639098e-2*(diff(W(x, theta), x, x, theta, theta, theta, theta))-36.0000000000000*(diff(U(x, theta), x, x, x))+9375.00*(diff(U(x, theta), x))+15.6731205946742*(diff(U(x, theta), x, theta, theta))-97.2834589649212*(diff(V(x, theta), x, x, theta))+31273.9463175575*(diff(V(x, theta), theta))-30.9917088694028*(diff(V(x, theta), theta, theta, theta))+2.06625000000000*10^5*W(x, theta)+313.462411893484*(diff(W(x, theta), theta, theta))+6.77715234781900*(diff(W(x, theta), theta, theta, theta, theta))-0.426628729281504e-3*(diff(W(x, theta), theta, theta, theta, theta, theta, theta))-400/((1-h3*f3(x))*ln(10-10*h3*f3(x))^2)-500/(1-h3*f3(x))^4:

BC := {D[1](U)*(0, theta) = 0, D[1](U)*(1, theta) = 0, D[1](U)*(x, 0) = 0, D[1](U)*(x, 1) = 0, D[1](V)*(0, theta) = 0, D[1](V)*(1, theta) = 0, D[1](V)*(x, 0) = 0, D[1](V)*(x, 1) = 0, D[1](W)*(0, theta) = 0, D[1](W)*(1, theta) = 0, D[1](W)*(x, 0) = 0, D[1](W)*(x, 1) = 0, D[2](W)*(0, theta) = 0, D[2](W)*(1, theta) = 0, D[2](W)*(x, 0) = 0, D[2](W)*(x, 1) = 0, U(0, theta) = 0, U(1, theta) = 0, U(x, 0) = 0, U(x, 1) = 0, V(0, theta) = 0, V(1, theta) = 0, V(x, 0) = 0, V(x, 1) = 0, W(0, theta) = 0, W(1, theta) = 0, W(x, 0) = 0, W(x, 1) = 0}

``

 

Download 2D.mw

Hello everyone!

Can somebody help me to sovle the following system numerically?

V:=5*10^(-5):
A:=2*10^(-4):
L:=0.02:
C0:=0.01:
d:=0.25:
eq1:=CL(t)*V+CR(t)*V+A*int(CS(x,t),x=0..L):
eq2:=CL(t)=eval(CS(x,t),x=0):
eq3:=CR(t)=eval(CS(x,t),x=L):
eq4:=CL(0)=C0:
eq5:=CL(10000)=C0/2:
eq6:=CL(10000)=CR(10000):
eq7:=V*(C0-CL(t))=A*d*int(eval(diff(CS(x,t),x),x=0),t=0..t1):
eq8:=V*CR(t)=A*d*int(eval(diff(CS(x,t),x),x=L),t=0..t1):
eq9:=diff(CS(x,t),t)=d*diff(CS(x,t),x,x):

Thanks!

1 2 3 4 5 6 7 Last Page 1 of 9