*Could anyone please hepl me? I have the following system*

e1 := exp(F(r)/phi_0)*L*A(r) = (1/2)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))/(B(r)^2*A(r)*r*C(r));

e2 := alpha*(diff(F(r), r, r))+(alpha^2+omega)*(diff(F(r), r))^2+(1/4)*(4*(diff(C(r), r, r))*B(r)*A(r)^2*C(r)*r+2*(diff(A(r), r, r))*A(r)*B(r)*r*C(r)^2-2*B(r)*A(r)^2*(diff(C(r), r))^2*r-(diff(A(r), r))^2*B(r)*r*C(r)^2-2*A(r)^2*C(r)*(diff(C(r), r))*(diff(B(r), r))*r-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)^2+8*B(r)*A(r)^2*C(r)*(diff(C(r), r))-4*A(r)^2*C(r)^2*(diff(B(r), r)))/(r*A(r)^2*B(r)*C(r)^2)-(1/4)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))/(B(r)*A(r)^2*r*C(r)) = 0;

e3 := (1/4)*(-2*(diff(C(r), r, r))*B(r)*A(r)*r^2-B(r)*(diff(A(r), r))*(diff(C(r), r))*r^2+A(r)*(diff(C(r), r))*(diff(B(r), r))*r^2-8*B(r)*A(r)*(diff(C(r), r))*r-2*B(r)*(diff(A(r), r))*C(r)*r+2*A(r)*C(r)*(diff(B(r), r))*r+4*B(r)^2*A(r)-4*B(r)*A(r)*C(r))/(B(r)^2*A(r)) = -(1/4)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))*r/(B(r)^2*A(r)^2);

e4 := -(alpha^2+2*omega)*(diff(F(r), r))*(-(1/2)*(-(diff(A(r), r))*B(r)*r^4*C(r)^2-A(r)*(diff(B(r), r))*r^4*C(r)^2-4*A(r)*B(r)*r^3*C(r)^2-2*A(r)*B(r)*r^4*C(r)*(diff(C(r), r)))/(A(r)*B(r)*r^4*C(r)^2)-(diff(B(r), r))/B(r)+(diff(F(r), r, r))/(diff(F(r), r))+alpha*(diff(F(r), r)))/B(r) = -exp(F(r)/phi_0)*V_0*(alpha-1/phi_0);

phi_0 := -alpha/(2*alpha^2+2*omega); L := V_0*(1-(alpha-1/phi_0)*alpha/(3*alpha^2+2*omega)); V_0 := -lambda*exp(-fc/phi_0); fc := ln((4*alpha^2+2*omega)/(G_0*(3*alpha^2+2*omega)))/alpha; m := (2/(1+g))^(1/2); n := g*(2/(1+g))^(1/2); P := (G_0*(3*alpha^2+2*omega)/(4*alpha^2+2*omega))^(-2*alpha/(n-m)); eta := 1.4*G_0*Ms*(2/(1+g))^(-1/2)/c^2; g := 1-alpha^2/(2*alpha^2+omega);

omega := -10^5; alpha := 1; G_0 := 6.67*10^(-11); lambda := 10^(-52); c := 2.9*10^8; Ms := 1.9*10^30;

ri := evalf(1000*eta);

ics := A(2.109660445*10^6) = 1, (D(A))(2.109660445*10^6) = 2.370091128*10^(-15)*sqrt(2)*sqrt(99998)*sqrt(199997), B(2.109660445*10^6) = 1, C(2.109660445*10^6) = 1, (D(C))(2.109660445*10^6) = 4.740182256*10^(-15)*(1-(99999/19999300006)*sqrt(2)*sqrt(99998)*sqrt(199997))*(1-1.000017501*10^(-8)*sqrt(2)*sqrt(99998)*sqrt(199997))^(-(99999/19999300006)*sqrt(2)*sqrt(99998)*sqrt(199997))*sqrt(2)*sqrt(99998)*sqrt(199997), f(2.109660445*10^6) = 23.43081116, (D(f))(2.109660445*10^6) = 4.749681180*10^(-15):

eta:=2109.660445: sys:=e1,e2,e3,e4; vars:=[A(r),B(r),C(r),F(r)];

dsn3 := dsolve([sys, ics], numeric, vars, range = 3*eta .. 50*eta);

*Results in*

**Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up**

*Setting f(r)=Const,V_0=0 which is a physically relevant case, results in*

**Error, (in simplify/normal) numeric exception: division by zero**

*I suugest the problem is that the equation contain sqared derivatives, hence there are several solution branches corresponding to different signs of square root. Maple chooses the singular branch. How can I force it to choose another branch or calculete all of them?*

*Thanks in advance..*