Items tagged with problem problem Tagged Items Feed

I have created a model for a robot in Solidworks and have imported it into Maplesim using the CAD toolbox. The problem I have is that the robot has 3 arms that are supposed to come together on a central piece pictured below in figure 1, but attempting to simulate the model with all arms connected with a revolute joint as in figure 2 yields an error that says "The system is underdetermined" the location of the error is main.

For the purposes of the image below I only connected one of the arms, this allows Maplesim to run the file successfully.

figure 1 showing the central piece that the 3 arms are supposed to connect to.

 

Figure 2 showing the problem revolute joints circled in black, the error at the bottom and the setting of the revolute joint on the right.

 

Essentially my question is how do I get the model to work? I apologise if this problem is not terribly well demonstrated, this is my first post onto this forum so I am not sure of all the standards.

I am currently working on an adaptive question in Maple TA 2016 and it seems that there is a bug in the drop - down list functionality: 

After I click "Verify" in a section, the answer disappears even though I choose it to be displayed. The window simply goes back to showing (Click for List) instead of keeping the answer, see the screenshot below.

 

Perhaps I am doing something wrong, though I have used Lists extensively in the previous version and never had that problem ..

 

Thanks for your  help!

Elisabeth

 

 

     It is known that ODE boundary value problem is similar to the problem of solving systems of nonlinear equations. Equations are the boundary conditions, and the variables are the values of the initial data.
For example:

y '' = f (x, y, y '), 0 <= x <= 1,

y (0) = Y0, y (1) = Y1;

Where y (1) = Y1 is the equation, and Z0 is variable, (y '(0) = Z0).

     solve () and fsolve () are not directly suitable for such tasks. Directly should work the package of optimization in relation to a system of nonlinear equations. (Perhaps it has already been implemented in Maple.)
Personally, I am very small and unprofessional know Maple and cannot do it. Maybe there is someone who would be interested, and it will try to implement this approach to solving ODE boundary value problems?  

hi.please see attached file below and help me.one problem is apply differential operator on matrix and then caclute 3D integral?

maple2.mw

restart; x = zz/L; y = (2*r-b)/a; z = alpha/Pi-1; L := .1; a := 0.1e-1; b := .11; E; 207*10^9; upsilon := .3

NN1 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN2 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN3 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN4 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN5 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN6 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN7 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN8 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN9 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN10 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN11 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN12 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1); NN13 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN14 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN15 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN16 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

(1)

``

 

N := Matrix([[NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0, 0], [0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0], [0, 0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16]])

RTABLE(18446744074182475774, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 3, 1 .. 48)

(2)

"Q:=Matrix([[(2/(a))*(&PartialD;)/(&PartialD; y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/(L)*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ),2/(a)(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/(L)*(&PartialD;)/(&PartialD; x),0,(2/(a))*(&PartialD;)/(&PartialD; y)],[0,1/(L)*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z )]])"

Error, invalid derivative

"Q:=Matrix([[(2/a)*(&PartialD;)/(&PartialD;y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/L*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ),2/a(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/L*(&PartialD;)/(&PartialD; x),0,(2/a)*(&PartialD;)/(&PartialD; y)],[0,1/L*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z )]])"

 

NULL

Q := Matrix([[2*Y/a, 0, 0], [2/(a*y+b), 2*Z/((a*y+b)*Pi), 0], [0, 0, X/L], [2*Z/((a*y+b)*Pi), 2*Y/a-2/(a*y+b), 0], [X/L, 0, 2*Y/a], [0, X/L, 2*Z/((a*y+b)*Pi)]])

Matrix([[0.2e3*Y, 0, 0], [2/(0.1e-1*y+.11), 2*Z/((0.1e-1*y+.11)*Pi), 0], [0, 0, 0.1e2*X], [2*Z/((0.1e-1*y+.11)*Pi), 0.2e3*Y-2/(0.1e-1*y+.11), 0], [0.1e2*X, 0, 0.2e3*Y], [0, 0.1e2*X, 2*Z/((0.1e-1*y+.11)*Pi)]])

(3)

````

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

Error, Got internal error in Typesetting:-Parse : "invalid subscript selector"

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

 

0

(4)

````

B := Q.N

RTABLE(18446744074182476230, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 6, 1 .. 48)

(5)

NULL

Vector(4, {(1) = ` 6 x 48 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(6)

d := (1-upsilon)/(1-2*upsilon); e := upsilon/(1-2*upsilon); DD := E*Matrix([[d, e, e, 0, 0, 0], [e, d, e, 0, 0, 0], [e, e, d, 0, 0, 0], [0, 0, 0, 1/2, 0, 0], [0, 0, 0, 0, 1/2, 0], [0, 0, 0, 0, 0, 1/2]])/(1+upsilon)

Matrix([[1.346153846*E, .5769230769*E, .5769230769*E, 0, 0, 0], [.5769230769*E, 1.346153846*E, .5769230769*E, 0, 0, 0], [.5769230769*E, .5769230769*E, 1.346153846*E, 0, 0, 0], [0, 0, 0, .3846153846*E, 0, 0], [0, 0, 0, 0, .3846153846*E, 0], [0, 0, 0, 0, 0, .3846153846*E]])

(7)

T := Transpose(B).DD.B

Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)}))

(8)

S := (1/4)*a*Pi*L*(a*y+b)*T

Typesetting[delayDotProduct](0.7853981635e-3*(0.1e-1*y+.11), Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)})), true)

(9)

int(int(int(S, z = -1 .. 1), y = -1 .. 1), x = -1 .. 1)

Warning,  computation interrupted

 

NULL

 

Download maple2.mw

hi.i am a problem with calculate numeric integral.

please help me

thanks

Float(undefined).mw

Compute the following multiple integral exactly and/or with 10 correct significant digits

Int(  exp( - add(x[i],i=1..10)^3),  seq(x[i]=0..1, i=1..10) );

  The problem is suggested by a previous post.

Some Maple 18 short (and I believe elegant) code for doing gravitational simulations with N bodies in space:

 

N_body_problem.mw

 

Initial velocities have been tweaked to keep the system stable for the duration of the animation.

 

Please feel free to fiddle with its parameters, velocities and positions and/or N itself, to produce more interesting animations or re-use the code therein (You can safely ignore the (c), it's there just for archiving purposes).

 

The following are animations from three runs with N=4, N=3 and N=2, no other parameters changed.