hi....how i can extract Coefficients (i.e. {f1[2],f2[2],f2[3],f3[2],.....f3[6]}) from every algebric equations and create matrix A ,in form AX=0, (X are f1[2],f2[2],f2[3],f3[2],.....f3[6] ) then the determinant of the matrix of coefficients (A) set to zero for obtaining unknown parameter omega.?

Note that if m=3 then 6 equations is appeare and if m=4 then 9 equations is appeare.thus i need a procedure that works for every arbitary value of ''m''.

in attached file below m=4 thus we have 9 equations, i.e. 3 for eq1[k_] and 3 for eq2[k_] and so on...

also we should use boundary conditions for some amount of fi[j] (i=1,2,3 and j=2,3,...,7)

be extacting above Coefficients for example from first equation ,

''**:= (1/128)*f1[2]*omega^2-(1/4)*f2[2]-(1/2)*f2[3]+(1/4)*f2[4]+(1/4)*f3[2]-(1/2)*f3[3]+(1/4)*f3[4]+140*f1[2]-80*f1[3]+20*f1[4]'''

must compute

coeff(**, f1[2]); coeff(**, f2[2]) and so on...

fdm-maple.mw

Download fdm-maple.mw