Items tagged with robot robot Tagged Items Feed

As an Arts major at the University of Waterloo, my first day as a co-op student in the Maplesoft marketing department was a bit of a blur. I was hearing a lot of mathematical jargon that I did not understand. Other than a mandatory statistics class in my second year at university, I haven’t taken a math course since high school, over two years ago. I spent my first week as the marketing assistant educating myself about the basics of marketing complex math software. My favourite method for doing this was to read through the Maplesoft user stories. As I read, I was amazed by the variety of customers and the endless applications that Maplesoft products had contributed to. It became apparent that math is a part of every industry and it is in the design of many products. There were a few stories from the robotics industry in particular that really sparked my interest in the software that I now market. 


We’ve all seen the futuristic movies where robots gradually get smarter and smarter, developing enough intelligence to control the human race, and eventually, take over the world. As it turns out, Engineered Arts, a UK robotics company, is bringing us one step closer to that reality. Well… they’re maybe not ready for world domination just yet, but they are working on one of the most advanced and human-like robots that the world has seen outside of a Hollywood production, and they are doing this using MapleSim. The first generation of the biologically inspired robot was named RoboThespian. With his ability to speak and sing, he was used to educate, entertain, and investigate new developments in robotics. However, he was largely static. That’s when the engineers began work on generation two of their robot, named Byrun, who has the ability to walk, run, jump, and hop as well as speak and sing. Byrun can even express thousands of different facial features thanks to his projective head display. This makes him even more human-like; scary or cool? I’m thinking a bit of both. If you’re interested in the story, click here to continue reading about it.


Another unexpected use of MapleSim was adopted as a joint research project between Ryerson University and McMaster University. I never would have guessed that math software could be applied to the process of human birth. Nevertheless, a group of researchers used MapleSim to simulate induced labour with a Foley Catheter. In short, this is when a small balloon is inserted through the opening of the cervix creating a downward pressure that effectively tricks the cervix into opening for labour to begin. Though the application of this story surprised me, it makes a lot of sense to use modelling software for a research project like this. It’s more efficient to get all of the kinks out of the virtual model in a simulation program before building a physical model that could end up being dysfunctional. According to Dr. James Andrew Smith, a Biomedical Engineering researcher and Assistant Professor in Electrical and Computer Engineering, who is the lead researcher on the project, “Modern engineering has a lot to offer the medical world,” especially when it saves on time and cost. Click here to read more about this story and to watch a video of the finished model.


After two months at Maplesoft, I have noticed that I don’t look at things in the same way that I used to. I find myself staring at a toaster and imagining how it was designed. Did the engineers use advanced physical simulation and modeling software to make the most efficient toaster possible? Well, if it can still only toast on one side then, my guess is no! Maplesoft has many more user stories that I haven’t had the chance to read yet. With customers ranging from BMW to Pixar, Maplesoft continues to expand its customer base and adapt its software to support more and more unique applications. I can’t wait to hear what new and unexpected things will be done with the software next!


My desk was covered with papers, a glass of water, and a big shipping container. Even though my chair was there, I was sitting on the floor with my laptop, having a bad hair day, and a robot was seated next to me.  This was a typical day at Maplesoft for an engineering co-op student.

For this project, at the request of my manager, I left my duties as Spanish translator and marketing assistant and I started to work with the robot NAO from Aldebaran Robotics. The purpose of this project was to program NAO using Aldebaran’s Choreographe software to make new movements and dances that I would later use to create new MapleSim models for Maplesoft’s Model Gallery. Maplesoft’s marketing team would then use these models in some of their promotional activities.

Given that NAO was going to travel to Taiwan in a short period of time, I wanted to focus on doing one elaborate dance and a couple of simple movements.Thanks to F.U.N. lab from the University of Notre Dame, I was able to focus on the detailed dance because they had an amazing Choreographe database of behaviour/movement code.   

I started this project with zero knowledge about Choreographe, but with a good understanding of NAO´s MapleSim model that the Maplesoft engineers had previously created. After a few weeks with NAO and some YouTube tutorials, I discovered that programming NAO was really easy. I would move NAO’s joints to the positions I wanted to, and then I would tap its head to record and save them. I did this for a couple of weeks making sure that the sequence of movements wouldn’t make NAO fall or break a finger. At this point I was already a NAO expert.

After finishing up all the movements and dances it was time to move on to the next phase of the project: obtaining the data for the MapleSim model. The MapleSim model was created using the Denavit-Hartenber (DH) convention; therefore, I needed the values of the degrees of rotation of each joint while the robot performed a dance. These numbers were easily obtained using the “record” button in Choreographe and exporting them into a CSV file. This file was later attached to the MapleSim model, so it could be used in a time look up table. The input of NAO´s joints were then specified by using the values within this table.

I started by recording the simplest movements: NAO blowing kisses and doing the sprinkler. These were the best ones to start working on because in these examples, the robot only needs to move its upper body, meaning that the lower body didn’t need any flexibility. This gave me and Abtin Athari, Application Engineer at Maplesoft, the freedom to simplify the original model by removing unnecessary degrees of freedom on the lower body. Abtin and I also realized that at the beginning of some of the new movements the robot would have too much torque, so we extended some of the recorded position of the rotational joints so the robot could stay in the same position for a longer time. These modifications ensured that the model wouldn´t have any problems during any of the simulations.

To finish the project, I worked with the Marketing team to create some videos where we could display the real robot next to the MapleSim model doing the same movements. The purpose of these videos was to showcase the essence of the high-fidelity models that MapleSim allowed us to create. It was amazing to see how the MapleSim model corresponded so closely to the physical robot.

After three weeks of intense work and meetings, my days as a robot whisperer ended. I learned new things about robots, how to build models with MapleSim, and the processes behind developing videos. It was a project that allowed me to wear both an engineer’s and a marketer’s shoes.  I was able to put into practice my technical knowledge and problem solving skills; and at the same time I was able to enhance my creative and analytical skills by evaluating the quality and impact of my work.


I was trying to find the solution for two theta variables in a couple of simultaneous equations (infact this is an iverse kinematics problem for a two link system pendulum).
The following are the initial inputs/equations to be manipulated:

Then I use the folowing command to rearrange for the theta values which I am after:

which gives me the result:

This is all fine until I give in values for l1, l2, x and y:


I have a RootOf in there with a _Z term poping up here and there. I know that this configuration of the two link mechanism in fact dows have a solution and that these numbers are reasonable. Thus I have three questions:

Why does this happen?
What does the "signum" mean here?
how do I go about getting the nummerical values?

Many thanks,
- pjf


I trying to simulate a force sensor on robot arm, but every time I try something, I get nothing from my sensor, can you help me?


Here it's my "design":


Also, if I add a rigid body I get this error:




Dr. Gilbert Lai is a mentor for the FIRST Robotics team SWAT 771. He is helping an all girls team from grades 7-12 design a basketball-shooting robot for this year’s annual FIRST Robotics Competition. Dr. Lai is using MapleSim and Maple to help the team understand the principles involved and design their robot. This blog post is part of a series that chronicles the progress of the team.  Posts in the series include:

  • Part 1 - 

I am building a robot arm,now I want to replace the rigid arm with the flexible arm. How can I control the arm's form?

This week I decided to do some research and find out the details of how to make model animations with MapleSim, by adding in CAD drawing files of the component parts. To see what I mean, take a look at this quick animated movie that shows a robot arm with five degrees of freedom:

Page 1 of 1