The work contains two procedures called ** SetPartition** and **NumbPart **.

The first procedure **SetPartition **generates all the partitions of a set **S** into disjoint subsets of specific sizes defined by a list **Q**. The third optional parameter is the symbol **`ordered`** or **`nonordered`** (by default) . It determines whether the order of subsets in a partition is significant.

The second procedure **NumbPart **returns the number of all partitions of the sizes indicated by ** Q** .

Codes of these procedures:

**SetPartition:=proc(S::set, Q::list(posint), K::symbol:=nonordered) **# Procedure finds all partitions of the set **S** into subsets of the specific size given **Q**.

**local L, P, T, S1, S2, n, i, j, m, k, M;**

**uses ListTools,combinat;**

**if `+`(op(Q))<>nops(S) then error "Should be `+`(op(Q))=nops(S)" fi;**

**L:=convert(Q,set);**

**T:=[seq([L[i],Occurrences(L[i],Q)], i=1..nops(L))];**

**P:=`if`(K=ordered,convert(T,list),convert(T,set));**

**S1:=S; S2:={`if`(K=ordered,[],{})}; n:=nops(P);**

**for i to n do**

**m:=P[i,1]; k:=P[i,2];**

**for j to k do**

**S2:={seq(seq(`if`(K=ordered,[op(s),t],{op(s),t}), t=choose(S1 minus `union`(op(s)),m)), s=S2)};**

**od; od;**

**if K=ordered then {map(op@permute,S2)[]} else S2 fi;**

**end proc:**

**NumbPart:=proc(Q::list(posint), K::symbol:=nonordered) **# Procedure finds the number of all partitions of a set into subsets of the specific size given **Q**

**local L, T, P, n, S, N;**

**uses ListTools;**

**L:=convert(Q,set);**

**T:=[seq([L[i],Occurrences(L[i],Q)], i=1..nops(L))];**

**P:=`if`(K=ordered,convert(T,list),convert(T,set));**

**n:=nops(P); N:=add(P[i,2], i=1..n);**

**S:=add(P[i,1]*P[i,2],i=1..n)!/mul(P[i,1]!^P[i,2],i=1..n)/mul(P[i,2]!,i=1..n);**

**if K=nonordered then return S else S*N! fi; **

**end proc:**

Examples of use:

**SetPartition({a,b,c,d,e}, [1,1,3]); nops(%); **# Nonordered partitions and their number

**SetPartition({a,b,c,d,e}, [1,1,3], ordered); nops(%); **# Ordered partitions and their number

** **

Here's a more interesting example. 5 fruits **{apple, pear, orange, mango, peach}** must be put on three plates so that on each of two plates are 2 fruits, and one fruit is on one plate. Two variants to solve: 1) plates are indistinguishable and 2) different plates. In how many ways this can be done?

**SetPartition({apple,pear,orange,mango,peach}, [1,2,2]); nops(%); **# plates are indistinguishable

**NumbPart([1,2,2], ordered); **# Number of ways for different plates

90

Another example - how many ways can be divided 100 objects into 10 equal parts?

**NumbPart([10$10]);**

64954656894649578274066349293466217242333450230560675312538868633528911487364888307200

SetPartition.mws