Items tagged with solve solve Tagged Items Feed

How do i proceed to solve two differential equations?

Two equations two unknowns is easy to solve in polynomial algebraic equations. Example: x+y=5; x-y=3; The solution is x=4; y=1 by adding the equations we arrive at.

The two equations are second order differential equations with two variables say temperature T (x,y) and velocity c(x,y). Assume any simple equation (one dimensional as well i.e. T(x) and c(x) which you can demonstrate with ease, I have not formulated the exact equations and boundary conditions yet for SI Engine simulation.

Thanks for comments, suggestions and answers expected eagerly.

Ramakrishnan

Hello to everyone,

I want to solve the following inequality:

solve(b^4-(2-d)*b^2-2*d*b+1+d > 0, [b]), where b is my variable and d is a pamater in (0,1]. 

When I try to sovle this I get a message "Warning, solutions may have been lost" and from the official maple website they suggest to reformulate the problem.

Is there anything I can do to solve the above inequality?

 

Thanks in advance!

Hi all,

 

It's been a while since I have used Maple. To be honest I haven't used it for over six years.

 

I am trying to solve simple differential equations, however I have many issues.

 

I am trying to simulate what author of this paper did 06421188.pdf

 

My file looks like this (Pendulum.mw)

 

Can someone help me to simulate this system? I simply can't remember how to do it.

 

Cheers,

Bart

Hello there

I'm quite an amature so please don't judge.  I'm trying to use fsolve to solve a system of non-linear equations but Maple is just "spitting" on me the equations with no intention to solve them:

> delta5 := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+zeq^2)*(sqrt(x^2+zeq^2)*x))+x*zeq/sqrt(x^2+zeq^2)^3)/(2*Pi*E5);
print(`output redirected...`); # input placeholder
> shrinkage := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Zb^2)*(sqrt(x^2+Zb^2)*x))+x*Zb/sqrt(x^2+Zb^2)^3)/(2*Pi*E5)-P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Za^2)*(sqrt(x^2+Za^2)*x))+x*Za/sqrt(x^2+Za^2)^3)/(2*Pi*E5);
> eq10 := subs(x = 1800, delta5)+subs(x = 1800, Zb = z2, Za = z1, shrinkage)+subs(x = 1800, Zb = z3, Za = z2, shrinkage)+subs(x = 1800, Zb = z4, Za = z3, shrinkage)+subs(x = 1800, Zb = z5, Za = z4, shrinkage) = 36.7*10^(-3);
print(`output redirected...`); # input placeholder
> eq9 := subs(x = 1500, delta5)+subs(x = 1500, Zb = z2, Za = z1, shrinkage)+subs(x = 1500, Zb = z3, Za = z2, shrinkage)+subs(x = 1500, Zb = z4, Za = z3, shrinkage)+subs(x = 1500, Zb = z5, Za = z4, shrinkage) = 47.2*10^(-3);
print(`output redirected...`); # input placeholder
> eq8 := subs(x = 1200, delta5)+subs(x = 1200, Zb = z2, Za = z1, shrinkage)+subs(x = 1200, Zb = z3, Za = z2, shrinkage)+subs(x = 1200, Zb = z4, Za = z3, shrinkage)+subs(x = 1200, Zb = z5, Za = z4, shrinkage) = 63.8*10^(-3);
> eq7 := subs(x = 900, delta5)+subs(x = 900, Zb = z2, Za = z1, shrinkage)+subs(x = 900, Zb = z3, Za = z2, shrinkage)+subs(x = 900, Zb = z4, Za = z3, shrinkage)+subs(x = 900, Zb = z5, Za = z4, shrinkage) = 91.1*10^(-3);
print(`output redirected...`); # input placeholder
> eq6 := subs(x = 600, delta5)+subs(x = 600, Zb = z2, Za = z1, shrinkage)+subs(x = 600, Zb = z3, Za = z2, shrinkage)+subs(x = 600, Zb = z4, Za = z3, shrinkage)+subs(x = 600, Zb = z5, Za = z4, shrinkage) = 137.9*10^(-3);
> eq5 := subs(x = 450, delta5)+subs(x = 450, Zb = z2, Za = z1, shrinkage)+subs(x = 450, Zb = z3, Za = z2, shrinkage)+subs(x = 450, Zb = z4, Za = z3, shrinkage)+subs(x = 450, Zb = z5, Za = z4, shrinkage) = 175.2*10^(-3);
> eq4 := subs(x = 300, delta5)+subs(x = 300, Zb = z2, Za = z1, shrinkage)+subs(x = 300, Zb = z3, Za = z2, shrinkage)+subs(x = 300, Zb = z4, Za = z3, shrinkage)+subs(x = 300, Zb = z5, Za = z4, shrinkage) = 230.9*10^(-3);
print(`output redirected...`); # input placeholder
> sys := {eq10, eq5, eq6, eq7, eq8, eq9};
print(`output redirected...`); # input placeholder
> fsolve(sys, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400});

and this is what Maple gives after the fsolve

 

fsolve({(3937.500000*(.2/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(450*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3888888889e-2/E5+(3937.500000*(.2/(202500+(650+h4)^2)+(450*(650+h4))/(202500+(650+h4)^2)^(3/2)))/E5 = .1752000000, (3937.500000*(.2/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(600*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2187500000e-2/E5+(3937.500000*(.2/(360000+(650+h4)^2)+(600*(650+h4))/(360000+(650+h4)^2)^(3/2)))/E5 = .1379000000, (3937.500000*(.2/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(900*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.9722222220e-3/E5+(3937.500000*(.2/(810000+(650+h4)^2)+(900*(650+h4))/(810000+(650+h4)^2)^(3/2)))/E5 = 0.9110000000e-1, (3937.500000*(.2/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1200*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.5468750000e-3/E5+(3937.500000*(.2/(1440000+(650+h4)^2)+(1200*(650+h4))/(1440000+(650+h4)^2)^(3/2)))/E5 = 0.6380000000e-1, (3937.500000*(.2/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1500*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3500000000e-3/E5+(3937.500000*(.2/(2250000+(650+h4)^2)+(1500*(650+h4))/(2250000+(650+h4)^2)^(3/2)))/E5 = 0.4720000000e-1, (3937.500000*(.2/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1800*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2430555555e-3/E5+(3937.500000*(.2/(3240000+(650+h4)^2)+(1800*(650+h4))/(3240000+(650+h4)^2)^(3/2)))/E5 = 0.3670000000e-1}, {E1, E2, E3, E4, E5, h4}, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400})

Hello All,

I have 6 equations that are similair in size to the one listed below. I am trying to find a single equation in terms of only 1 of the variables (s11). After finding this equation I want to solve it for that single variable. When I start plugging all these equations into eachother I get to about the last one then maple seems to get stuck evaluating. I left it on overnight thinking that if I gave it time it would eventually solve, but this didn't seem to work. My questions is, If I gave it enough time would it solve this? Is there another way to do this? Any help you guys could offer would be a great help. Thanks!

 

Sample Equation

Can someone help me figure out what's going on? Here's the PDE I'm trying to solve, and I'm clearly getting the wrong answer.

 

 

 

If i have to solve the eq. i have to guess what U2 is  until i get close to U1 that the error is ok. can i do this in maple. or du i have to make program.

 

 

 

If you have several results, e.g. one being real, the others complex. How can you choose?


G := 6.673*10^(-11):

M := 1.9891*10^30:

AU := 1.4959787066*10^11:

v := proc (R) options operator, arrow; 2332800000/(Pi*(R^3*AU^3/(G*M))^.5) end proc;

proc (R) options operator, arrow; 2332800000/(Pi*(R^3*AU^3/(G*M))^.5) end proc

(1)

a := solve(.601 = 60*(360*60)/(2*Pi*((R*AU)^3/(G*M))^.5)*3600, R);

39.26171595, -19.63085797+34.00164341*I, -19.63085797-34.00164341*I

(2)

op(1, a)

Error, invalid input: op expects 1 or 2 arguments, but received 4

 

``


Download Worksheet_CaseStudy.mw

  Solving trigonometry Equations  sin^2(2x)-cos^2(8x)=0.5cos(10x)

Hi,

 

I am new to Maple and have a problem when solving three equations with three variables. But when  I plug in into solve function then it gives no answer.

eqn1 := 24900 = A*exp(-X*1.293995859*10^22)+A*exp(-Y*1.293995859*10^22)+5852.27;

eqn2 := 6000 = A*exp(-X*1.293995859*10^22)+2422.929937;

eqn3 := 19100 = A*exp(-Y*1.293995859*10^22)+8275.199937;

Variables are [A,X,Y]

Using Maple 18, I solved for minimum and maximum price. Instead of using fsolve I wanna use procedure programming structure in order to get the same results. How can I do it?

min_sol := fsolve([bc_cond, slope_cond, x[G, 1] = w[aggr, 1]], {p = 0 .. 1, x[G, 1] = 0 .. w[aggr, 1], x[G, 2] = 0 .. w[aggr, 2]}); p_min := subs(min_sol, p); max_sol := fsolve([bc_cond, slope_cond, x[G, 2] = w[aggr, 2]], {p = 0 .. 1, x[G, 1] = 0 .. w[aggr, 1], x[G, 2] = 0 .. w[aggr, 2]}); p_max := subs(max_sol, p);
{p = 0.3857139820, x[G, 1] = 127.8000000, x[G, 2] = 38.99045418}
0.3857139820
{p = 0.8841007104, x[G, 1] = 44.30160890, x[G, 2] = 164.2000000}
0.8841007104

Hello every one,

Is any one knows how to solve the following inequality with assumptions that all parameters are real positive and k<1 and delta > c*alpha

(1/2)*((alpha*k^2-3*alpha*k-2*beta)*sqrt(delta^2*(k-1)*(k-2)*(c*alpha-delta)^2)-k*delta*(alpha*k^2-3*alpha*k+2*alpha-2*beta)*(c*alpha-delta))/(delta^2*(alpha*k^2-3*alpha*k-2*beta))<0

I tried the following code but it  dosn't make sense:

u:=(1/2)*((alpha*k^2-3*alpha*k-2*beta)*sqrt(delta^2*(k-1)*(k-2)*(c*alpha-delta)^2)-k*delta*(alpha*k^2-3*alpha*k+2*alpha-2*beta)*(c*alpha-delta))/(delta^2*(alpha*k^2-3*alpha*k-2*beta))

solve({u < 0,alpha > 0, beta > 0, c > 0, delta > 0, delta > c*alpha, k > 0, k < 1, })

In fact I want to know under which circumastances the above inequality is negative.

THX

What is the best way to solve for the simple equation X^2+y^2=1[m]^2 symbolically for either x or y? I actually have a huge list of equations and want to solve the group but my problem boils down to the issue here where I get two possible solutions though using the assumption one is clearly negative and the assumption used should exclude negative results (see attempt below). Also solve doesn't seem to work with units either...  any ideas? Can I give the variables units in a meaningful way?

--------------------------------------------------------------------------------------------------------------------------

restart;

with(RealDomain);
f := x^2+y^2 = 1;

                            x^2+y^2 = 1

assume(y > 0)

a := y > 0

y1 = solve(f, y, useassumptions = true)

                          y1 = (sqrt(-x^2+1), -sqrt(-x^2+1))

 

y2 = solve({a, f}, y)

                          y2 = ({y = sqrt(-x^2+1)}, {y = -sqrt(-x^2+1)})

-------------------------------------------------------------------------------------------

Why is y = -sqrt(-x^2+1) a solution?

Also, how do I use units when trying to solve 

-------------------------------------------------------------------------------------------

restart;
f := x^2+y^2 = Unit('m')^2;
                           x^2+y^2 = Unit('m')^2

assume(x > 0);
assume(y > 0);
d = solve(f, y, useassumptions = true);

Error, (in Units:-Standard:-+) the units `m^2` and `1` have incompatible dimensions

---------------------------------------------------------------------------------------------

 

THANKS!

Can anyone coax Maple to solve this reccurence relation? It seems harmless enough but Maple is struggng a bit with "hypergeomsols."

f := c -> (2*n-c)*f(c-1) - (c-1)*n*f(c-2);

f(0) := 1;

f(1) := 2*n-1;

 

Hi, I'm new to Maple and was trying to use it to solve 3 equations with 3 unknowns, in terms of another 2 parameters. This is what I put in, and the error that came up:

solve({(1-x)/(1+b) = b*y, (1-y)(1-a)/(-a*b+1) = b*z, (1-z)(1-b)/(-a*b+1) = a*x}, {x, y, z}); 

Error, (in SolveTools:-LinearSolvers:-Algebraic) unable to compute coeff

I want to solve the equations to get x,y,z in terms of a,b but I don't understand the error coming up - have I done something wrong or is it because not all the variables appear in all of the equations? As there are 3 equations and 3 unknowns there is a solution, but I want to check the answer I found on paper with something (the algebra got a bit messy!)

Any help greatly appreciated! :)

1 2 3 4 5 6 7 Last Page 1 of 39