Items tagged with solve

Feed

sys1:=-.736349402144656384 = -1.332282598*10^12*(-.99999999999999966)^po1-1.332282598*10^12*(-.99999999999999966)^po2-.735533633151605248*Resid;

sys2:=.326676717828940144 = 1.331567176*10^12*(-.99999999999999966)^po1+1.331567176*10^12*(-.99999999999999966)^po2+.325144093024965720*Resid;

sys3:=.590327283775080036 = -1.072184073*10^9*(-.99999999999999966)^po1-1.072184073*10^9*(-.99999999999999966)^po2+.589610307487437146*Resid;

Minimize(sys1, {sys2,sys3},assume = nonnegative);

complex value encountered;

I found this error extremely confusing when using the solve function:

 

Error, (in Engine:-Dispatch) cannot determine if this expression is true or false: 1000 < 5^(1/2)
 

Hi, i encountered this, error, and the link to the help page was broken.

Error, (in RootOf) expression independent of _S000100
 

Trying to solve:

solve (arctan((2*x^2-1)/(2*x^2+1)) = 0, x);

The answer I get is the original function:

 
            arctan((2*x^2-1)/(2*x^2+1))

 

This example is from the Maple book by Keck, and he shows the Maple V answer as

1/2 sqrt(2) -1/2 sqrt(2)     

Suggestions?

I want to find the first positive solution of the system of trigonometric equations inside the loop.

The solutions are in the form of "d=number*_Z +number" but I need one exact solution to use it for next run of the loop.
 

restart;
L[0]:=0:
for i from 1 by 1 to 3 do
assume(0<d[i], d[i]<1):
assume(-0.01<a[i], a[i]<0):
L[i]:= L[i-1]+ d[i]:
sys[i]:={Re((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = -0.4, Im((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = 0.8}:
solve(sys[i], {a[i],d[i]}, useassumptions = true,AllSolutions=true):
end do;
 

These are the solutions:

d[1] = 0.03689590440 + 0.5000000000 _Z1

d[2] = -1.000000000 d[1] + 0.03689590440 + 0.5000000000 _Z2

d[3] = -1.000000000 d[1] - 1.000000000 d[2] + 0.03689590440 + 0.5000000000 _Z3

 

Hey friends

I want to solve this relation with respect to "M"analytically but maple answer me: "Warning, solutions may have been lost"

How I can solve this problem and get to an analytical solution. It must be noted -1<w<-1/3. we can fix "w" with any value inn this interval. It be accepted any solution for any fixed "w".

Thank you

Analytically_solution.mw

Hi,

I want to solve this equation with respect to M, But Maple answer me: "solution may have been lost"

 

How I can solve this equation?

Thanks guyz

Solutionmayhavebeenlost.mw

Greetings Sirs,

I have recently aquired Maple for some mathematics, and being a new user, I basically google for everything at the moment.

While it has gone well so far, I seem to have hit a bump that I cannot figure out.

I have a function: f(x)=3.2+0.4sin(1.25x), 0<x<5

Trying to find the places where "f(x)=3.5" would normally be done with the equation "3.5=3.2+0.4sin(1.25x)", and when I solve for the equation in Maple I get a solution too.

Problem is though, I know there is supposed to be multiple solutions. Having used wolframalpha, and being capable of seeing the plot in Maple, I know there is two points within the period "x=0..5" that is the solution.

But when I try to solve the equation, I get only one solution per solve, and the second solve doesn't make much sense for me. These are what I use:

As you can see, in the first solve the entire function is being taking into consideration, yet I only get one solution... In the second solve I have tried specifying a period, but I still only get one solution.

Basically any help here is appreciated, because from what I understand, having read google, the solve command or fsolve command is supposed to give multiple results if they are there.

With appreciation,
Ciesi

(Edit: Image size changed)

I want to solve this equation with assumptions!!!

restart;
assume(d::real, d>0):
assume(a::real, -0.01 < a, a < 0):
sys:={-800*Pi*a*cos(6.557377048*Pi*(3.470797713+d))/(a+1)^3 = -.9396060697, 800*Pi*a*sin(6.557377048*Pi*(3.470797713+d))/(a+1)^3 = -.3238482794};
solve(sys, {a,d},useassumptions=true, AllSolutions=true);

one of the solutions has true "a" but "d" is wrong, I want one true solution!

I have the following equality:(N*(P-p[th])/K+p[th])/(2+2*N*Gamma/K+(1+N*Gamma/K)^2/(N*(P-p[th])/K+p[th])) = p[th]/(2+1/p[th]).

How can I get the solution step by step? I have read the forums around and tried few of the tutors, but most of them are either for single variable or I have to specify values for the variables.

can Maple solve bessel function by itself?

Or it seems i need to work out the solving process on myown?

my function is just like this, a simple one

please let me know if yo have any idea about it.

best regards

memdream

 

v=u+at                      (1)
s=u*t+1/2*a*t^2        (2)

below 3 equations, can substitute  (1)  into it to form (2)
s=1/2*(u+v)*t       (3)
v^2=u^2+2*a*s    (4)
s=v*t-1/2*a*t^2    (5)

can these 5 equations be considered as a solution set of solve function?

or

is only first 2 equations be a solution set?

if so, number of equations less than 5 variables, is there something missing?
 

I am trying to solve system consisting of two equations and two unknowns. I tried solve but it gives back unevaluated then I tried fsolve which gives an error.
 

restart; x := 2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi); y := 2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi); evalf(solve({x = 0, y = 0}, {phi, `&epsilon;`})); fsolve({x = 0, y = 0}, {phi, `&epsilon;`})

.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

{phi = 0., `&epsilon;` = `&epsilon;`}, {phi = 1.570796327, `&epsilon;` = `&epsilon;`}, {phi = phi, `&epsilon;` = RootOf(1560418629*_Z^18+(47406901510+493307879100*sin(phi)^2)*_Z^16+(40772142920000*sin(phi)^4+9608710101000*sin(phi)^2+958254350600)*_Z^14+(14148147310000+124975377900000*sin(phi)^2+534992600200000*sin(phi)^4+1277730241000000*sin(phi)^6)*_Z^12+(11242690220000000*sin(phi)^6+1186386550000000*sin(phi)^2+17424832170000000*sin(phi)^8+156264947800000+4588193106000000*sin(phi)^4)*_Z^10+(8234222560000000*sin(phi)^2+61944229700000000*sin(phi)^6+98851685540000000*sin(phi)^8+108012832000000000*sin(phi)^10+27756452360000000*sin(phi)^4+1283200926000000)*_Z^8+(7437311918000000+114825016900000000*sin(phi)^4+297577152600000000*sin(phi)^12+325818464400000000*sin(phi)^8+365611302800000000*sin(phi)^10+224213950200000000*sin(phi)^6+39816168440000000*sin(phi)^2)*_Z^6+(485772994700000000*sin(phi)^6+628227500400000000*sin(phi)^10+522269744600000000*sin(phi)^12+329395988600000000*sin(phi)^14+25653813580000000+617046303500000000*sin(phi)^8+116888409900000000*sin(phi)^2+289102227500000000*sin(phi)^4)*_Z^4+(22127156830000000+137581086300000000*sin(phi)^2+468911919600000000*sin(phi)^10+352010205100000000*sin(phi)^12+225275316300000000*sin(phi)^14+528250625500000000*sin(phi)^8+327003543500000000*sin(phi)^4+113436430000000000*sin(phi)^16+482074590900000000*sin(phi)^6)*_Z^2-62572261930000000-13317339210000000*sin(phi)^2+12655803050000000*sin(phi)^16+54673602200000000*sin(phi)^4+86678520620000000*sin(phi)^8+43371363110000000*sin(phi)^12+66451398020000000*sin(phi)^10+88614086100000000*sin(phi)^6+24941899980000000*sin(phi)^14+5208654259000000*sin(phi)^18)}

 

Error, (in fsolve) number of equations, 1, does not match number of variables, 2

 

``


 

Download equations_solve.mw

how can i solve this inequality in maple ? i want to solve y in terms of x and then plot y,x
could anyone help? tnx in advance

 


 

restart:

with(SolveTools[Inequality]):

eq:=1/(x*y^(2/3))*8.620689655172415*10^(-16)*(-3.11*10^23*x^2*y^(7/6)-3.92*10^19*y^(25/6)+2.14545039999999*10^29*(0.0108*exp(-45.07/y)+exp(-19.98/y^(1/3)-0.00935317203476387*y^2)))/(x+0.015*y^(1.2));

0.8620689655e-15*(-0.3110000000e24*x^2*y^(7/6)-0.3920000000e20*y^(25/6)+0.2317086432e28*exp(-45.07/y)+0.2145450400e30*exp(-19.98/y^(1/3)-0.935317203476387e-2*y^2))/(x*y^(2/3)*(x+0.15e-1*y^1.2))

(1)

solve({eq>0},y);

Warning, solutions may have been lost

 

 


 

Download solveee.mw

solve(diff(-1/x,x) = (-1/x)^(b), b);

originally is 2, but it use ln(....) to express
 
if start from substitute, it seems need to replace manually.

solve(subs(a(x)=-1/x,diff(a(x),x) = (a(x))^(b)), b);

 
goal is to find b in equation below
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)^(b), b);
(2*x+1)/(-1+x)^2-(2*(x^2+x+1))/(-1+x)^3 = ((x^2+x+1)/(-1+x)^2)^(b)
 
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)*(b), b);
1 2 3 4 5 6 7 Last Page 1 of 48