Items tagged with solve solve Tagged Items Feed

With your help I have a solution to a system of three equations:

(parameters are calculated on the basis of the data (for different values) - one example below)
A1=0.00002072968491, A2=0, A3=0.001946449287, A4=0.01946449287

B1=, B2=0, B3=0.0004773383613, B4=0.00004773383613

C1=, C2=0, C3=, C4=0.00009087604510

 

eqa1: = A1 * (diff (Tg (x), x, x)) + A2 * (diff (Tg (x), x)) + (A3 + A4) * tan (x) + A3 * Tg (x) + A4 * Tw (x) = 0;

eqa2: = B1 * (diff (Tw (x), x, x)) + B2 * (diff (Tw (x), x)) + (B3 + B4) * Tw (x) + B3 * Tg (x) + B4 * tan (x) = 0;

eqa3: = C1 * (diff (Tz (x), x, x)) + (C3 + C4) * Tg (x) + C3 * tan (x) + C4 * Tw (x) = 0;

 

indets ({eqa1, eqa2, eqa3}) minus {x};

res: = Dsolve (eval ({eqa1, eqa2, eqa3}) union {boundary conditions ??}, numeric);

 

for k from 0 to 20 evalf (res (k), 4); from;

c1:= 0.524:

c2:=0.05:

m: = 0;

for m from 0 to 20 and

T (m): = c1 * rhs (op (6, res (m))) + c2 * rhs (op (2, res (m))) + (1-c1-c2) * rhs (op (4, res (m))); print (m, T (m)); end to:

 

How and what type boundary conditions (I was thinking about the simplest or third type) to be able to determine the values on the y-axis on the graph. For example, the values started at -10, and ended at 10 (at a point (x, -10), (x, 10) in the coordinate system for a predetermined x, for example, from 0 to 20 which start at the point (0, -10 ) and stop at the point (20,10)). My main purpose is to collect these three solutions  to one equation T (x) = az * Tz (x) + and * Tw (x) + ag * Tg (x), and the ends of the graph, they should be in the above-mentioned points (0, -10 ) - start and (20,10) - stop.

 

Now thank you very much for the advice.

Ewa.

Hi there,

 

I'd like to solve 7th order implicit simultaneous equation such as below, so I tried to do it by solve command.

However the calculation wasn't over although three hours passed.

 

eq1 := f1(a,b,c,d,e,f,g) = 0;

eq2 := f2(a,b,c,d,e,f,g) = 0;

.

.

.

eq7 := f7(a,b,c,d,e,f,g) = 0;

 

Just for your information, the eq1 and eq6 are written as follows specifically.

eq1 := -a-b-c-d-e-f-g+0.501857 = 0

eq6 := a*b*c*d*e*f+a*b*c*d*e*g+a*b*c*d*f*g+a*b*c*e*f*g+a*b*d*e*f*g+a*c*d*e*f*g+b*c*d*e*f*g+a*b*c*d*e+a*b*c*d*f+a*b*c*d*g+a*b*c*e*f+a*b*c*e*g+a*b*c*f*g+a*b*d*e*f+a*b*d*e*g+a*b*d*f*g+a*b*e*f*g+a*c*d*e*f+a*c*d*e*g+a*c*d*f*g+a*c*e*f*g+a*d*e*f*g+b*c*d*e*f+b*c*d*e*g+b*c*d*f*g+b*c*e*f*g+b*d*e*f*g+c*d*e*f*g-0.5281141885e-3+1.01894577*10^(-12)*I = 0

 

And the program code I used is:

solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7],[a,b,c,d,e,f,g]);

 

Here is the specification of my computer.

OS: Windows 7 Enterprise 64bit

CPU: Intel Core i7-3520M 2.90 GHz

Memory: 4.00 GB

 

How can I handle this problem? Is the specification not enough to solve the equation? Do I need to leave my computer more and more time?

Any help would be appriciated.

Having solution of an inequations system, is there a way/function/algorithm to find a particular numeric solution (as simplex[minimize] can do) ?

ex:

Q := {1 < x - y, x + y < 1};

R := solve(Q);

      { x < 1 - y, y < 0, y + 1 < x }

manually it's easy to find some numeric solutions:


      y = -1, x = 1
      y = -2, x = 0

but I need an automatic way.

Thank you for your help
s.py

 

I have a large system of linear algebraic equations that I want to solve (2005 Unknowns, 2005 Equations). I was wondering that what are the proper commands to use in maple for solving the system as fast as possible. Take a look at the files in the download link if you want to see the system of linear algebraic equations.

http://pc.cd/h79

Please provide me any suggesitons that you may think will be helpful like using other sofwares that are good in doing this work such as MATLAB or something else.


Thanks in Advance




Hello Dears

I have this equation

                                          (Napla)^4 * F(x,y) + k^2 *  (Napla)^2 * F(x,y)= 0,      (1)

which may be written as a non-homgeneous Helmholtz equation as

                                          (Napla)^2 * F(x,y) + k^2 * F(x,y)= g(x,y),                (2)

where the function g(x,y) is a harmonic function and (Napla)^2 is the laplace's operator in two dimension.

Can Maple solve equation (1), it will be better. If not may be solve equation (2).

 

How do i use d'Alembert formula to solve,plot and animate with Maple software

Every time I try to solve for a variable it gives me an arrow.

ex solve(5.6*10^-4=((x)(x))/(0.2-x),x)

gives me

x -> 7/62500 - 7/12500 x

How do I get it to stop giving me the x -> ?

Or at least reset some options so I don't have to reinstall the whole thing?

solve([b+c = a*a1+b*a4+c*a7, a+c=a a2+b a5+c a8, a+b = a*a3+b*a6+c*a9], [a1,a2,a3,a4,a5,a6,a7,a8,a9]);

how to assume a1 to a9 are 0 or 1

and find one of possible matrix is

Expected Result := Matrix([[1,1,0],[1,0,1],[0,1,1]]);

is it possible to assume element of matrix 0 or 1

how to write?

after write this, is it possible to display possible matrices which each element is 0 or 1

with(LinearAlgebra):
GetRing := proc(sol)
ringequation := 0;
mono1 := 0;
for j from 1 to 3 do
mono1 := 1;
for i from 1 to nops(sol[1][j]) do
mono1 := mono1*op(i, sol[1][j]);
od:
ringequation := ringequation + mono1;
od:
return ringequation;
end proc;
M := Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]]);
sys := a*b+a = GetRing(MatrixMatrixMultiply(Matrix([[a,b,c]]), M));
solve(sys);

teliko.mwMapl_doc.docxHello,

After I have substitute all the variables by hand ,maple still continious  processing(27 hours and still evaluating)for a simple

summarisation by the time that live math2 needed only 2 mins.Have i done something wrong?I want to solve the following equation which is shown in the attached file with the experimental data

Hello guys

I have a question:

I have an equation like below. Always it has different order for example :

T1:=q3*(r^6)+q2*(r^4)+q1*(r^2)+q0:
solve(T1=0,r):
and sometimes:

T2:=q5*(r^4)+q6*(r^2)+q7:
solve(T2=0,r):
q0,q1,q2,q3,q4,q5,q6 and q7 are constants.

We know that for T1 It has two real answer and for T2 we have any real answer.

How can I specify generally the real answers for all of them?

I want to use these real answer for another equation.

Thanks

To me the following behavior of solve is surprising:

restart;
solve(f(0.5)=7,f(0.5)); #Output NULL
solve(f(1/2)=7,f(1/2)); #Output as expected 7

Debugging solve suggested to me that the following might work
solve(f(0.5)=7,f(1/2));
and indeed it did (outout the float 7.).
This behavior seems to have started in Maple 10. I checked Maple V,R3 and several other old versions including Maple 9.5. All behaved as I would have expected. MapleV,R3 gave the float 7. in the first case, the other the integer 7.
I take this to be a bug and shall file an SCR.
Any comments?




This application creates DNG matrices by optimizing Delta E from a raw photo of x-rites color checker. The color temperature for the photograph is also estimated.  Inputs are raw data from RawDigger and generic camera color response from DXO Mark.

Initialization

   

NULL

NULL

NULL

NULL

NULL

XYZoptical to RGB to XYZdata

 

 

Sr,g,b is the relative spectral transmittance of the filter array not selectivity for XY or Z of a given color.

Pulling Sr,g,b out of the integral assumes they are scalars. For example Sr attenuates X, Y and Z by the same amount.

Raw Balance is not White Point Adaptation.

The transmission loss of Red and Blue pixels relative to green is compensated by D=inverse(S). The relation to incident chromaticity, xy is unchanged as S.D=1.

(See Bruce Lindbloom; "Spectrum to XYZ" and "RGB/XYZ Matrices" also, Marcel Patek; "Transformation of RGB Primaries")

 

 

X = (Int(I*xbar*S, lambda))/N:

Y = (Int(I*ybar*S, lambda))/N:

Z = (Int(I*zbar*S, lambda))/N:

N = Int(I*ybar, lambda):

• 

XYZ to RGB

(Vector(3, {(1) = R_Tbb, (2) = G_Tbb, (3) = B_Tbb})) = (Matrix(3, 3, {(1, 1) = XR*Sr, (1, 2) = YR*Sr, (1, 3) = ZR*Sr, (2, 1) = XG*Sg, (2, 2) = YG*Sg, (2, 3) = ZG*Sg, (3, 1) = XB*Sb, (3, 2) = YB*Sb, (3, 3) = ZB*Sb})).(Vector(3, {(1) = X_Tbb, (2) = Y_Tbb, (3) = Z_Tbb}))

NULL

(Vector(3, {(1) = R_Tbb, (2) = G_Tbb, (3) = B_Tbb})) = (Matrix(3, 3, {(1, 1) = Sr, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = Sg, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = Sb})).(Matrix(3, 3, {(1, 1) = XR, (1, 2) = YR, (1, 3) = ZR, (2, 1) = XG, (2, 2) = YG, (2, 3) = ZG, (3, 1) = XB, (3, 2) = YB, (3, 3) = ZB})).(Vector(3, {(1) = X_Tbb, (2) = Y_Tbb, (3) = Z_Tbb}))

 

Camera_Neutral = (Matrix(3, 3, {(1, 1) = Sr, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = Sg, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = Sb})).(Matrix(3, 3, {(1, 1) = XR, (1, 2) = YR, (1, 3) = ZR, (2, 1) = XG, (2, 2) = YG, (2, 3) = ZG, (3, 1) = XB, (3, 2) = YB, (3, 3) = ZB})).(Vector(3, {(1) = X_wht, (2) = Y_wht, (3) = Z_wht}))

NULL

NULL

NULL

• 

RGB to XYZ (The extra step of adaptation to D50 is included below)

 

(Vector(3, {(1) = X_D50, (2) = Y_D50, (3) = Z_D50})) = (Matrix(3, 3, {(1, 1) = XTbbtoXD50, (1, 2) = YTbbtoXD50, (1, 3) = ZTbbtoXD50, (2, 1) = XTbbtoYD50, (2, 2) = YTbbtoYD50, (2, 3) = ZTbbtoYD50, (3, 1) = XTbbtoZD50, (3, 2) = YTbbtoZD50, (3, 3) = ZTbbtoZD50})).(Matrix(3, 3, {(1, 1) = RX*Dr, (1, 2) = GX*Dg, (1, 3) = BX*Db, (2, 1) = RY*Dr, (2, 2) = GY*Dg, (2, 3) = BY*Db, (3, 1) = RZ*Dr, (3, 2) = GZ*Dg, (3, 3) = BZ*Db})).(Vector(3, {(1) = R_Tbb, (2) = G_Tbb, (3) = B_Tbb})) NULL

NULL

(Vector(3, {(1) = X_D50, (2) = Y_D50, (3) = Z_D50})) = (Matrix(3, 3, {(1, 1) = XTbbtoXD50, (1, 2) = YTbbtoXD50, (1, 3) = ZTbbtoXD50, (2, 1) = XTbbtoYD50, (2, 2) = YTbbtoYD50, (2, 3) = ZTbbtoYD50, (3, 1) = XTbbtoZD50, (3, 2) = YTbbtoZD50, (3, 3) = ZTbbtoZD50})).(Matrix(3, 3, {(1, 1) = RX, (1, 2) = GX, (1, 3) = BX, (2, 1) = RY, (2, 2) = GY, (2, 3) = BY, (3, 1) = RZ, (3, 2) = GZ, (3, 3) = BZ})).(Matrix(3, 3, {(1, 1) = Dr, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = Dg, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = Db})).(Vector(3, {(1) = R_Tbb, (2) = G_Tbb, (3) = B_Tbb}))

NULL

(Vector(3, {(1) = X_D50, (2) = Y_D50, (3) = Z_D50})) = (Matrix(3, 3, {(1, 1) = RX_D50, (1, 2) = GX_D50, (1, 3) = BX_D50, (2, 1) = RY_D50, (2, 2) = GY_D50, (2, 3) = BY_D50, (3, 1) = RZ_D50, (3, 2) = GZ_D50, (3, 3) = BZ_D50})).(Matrix(3, 3, {(1, 1) = Dr, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = Dg, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = Db})).(Vector(3, {(1) = R_Tbb, (2) = G_Tbb, (3) = B_Tbb}))

NULL

(Vector(3, {(1) = X_D50wht, (2) = Y_D50wht, (3) = Z_D50wht})) = (Matrix(3, 3, {(1, 1) = RX_D50, (1, 2) = GX_D50, (1, 3) = BX_D50, (2, 1) = RY_D50, (2, 2) = GY_D50, (2, 3) = BY_D50, (3, 1) = RZ_D50, (3, 2) = GZ_D50, (3, 3) = BZ_D50})).(Matrix(3, 3, {(1, 1) = Dr, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = Dg, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = Db})).Camera_Neutral

NULL

Functions

   

NULL

Input Data

   

NULL

Solve for Camera to XYZ D50 and T

   

NULL


Download Camera_to_XYZ_Tcorr.mw

 

Dear Maple enthusiasts,

I am unable to find a working method to solve a system of 8 equations, of which 4 are differential equations. The system contains 8 unknown variables and the goal is to find an expression for each of these variables as a function of the time t. I have attached the code of my project at the bottom of this message.

I have tried the following:

  1. Using solve/dsolve to solve all 8 equations at once. This results in Maple eating up all of my memory and never finishing its calculations.
  2. First using solve to solve the 4 non-differential equations so that I get 4 out of 8 variables as a function of the 4 remaining variables. This results in an expression containing RootOf() for each of the 4 veriables I'm solving for, which prevents me from using these expressions in the 4 remaining differential equations.
  3. First using dsolve to solve the differential equations, which gives once again an expression for 4 variables as a function of the 4 remaining variables. I then use solve to solve the 4 remaining equations with the new found expressions. This results in an extremely long solution for each of the variables.

The code below contains the 3rd option I tried.

Any help or suggestions would be greatly appreciated. I have been scratching my head so much that I'm getting bald and whatever I search for on google or in the Maple help, I can't find a good reference to a system of differential equations together with other equations.

 

 

restart:

PARK - Mixed control

 

 

Input parameters

 

 

Projected interface area (m²)

A_int:=0.025^2*Pi:

 

Temperature of the process (K)

T_proc:=1873:

 

Densities (kg/m³)

Rho_m:=7000: metal

Rho_s:=2850: slag

 

Masses (kg)

W_m:=0.5: metal

W_s:=0.075: slag

 

Mass transfer coefficients (m/s)

m_Al:=3*10^(-4):

m_Si:=3*10^(-4):

m_SiO2:=3*10^(-5):

m_Al2O3:=3*10^(-5):

 

Weight percentages in bulk at t=0 (%)

Pct_Al_b0:=0.3:

Pct_Si_b0:=0:

Pct_SiO2_b0:=5:

Pct_Al2O3_b0:=50:

 

Weight percentages in bulk at equilibrium (%)

Pct_Al_beq:=0.132:

Pct_Si_beq:=0.131:

Pct_SiO2_beq:=3.13:

Pct_Al2O3_beq:=52.12:

 

Weight percentages at the interface (%)

Constants

 

 

Atomic weights (g/mol)

AW_Al:=26.9815385:

AW_Si:=28.085:

AW_O:=15.999:

AW_Mg:=24.305:

AW_Ca:=40.078:

 

Molecular weights (g/mol)

MW_SiO2:=AW_Si+2*AW_O:

MW_Al2O3:=2*AW_Al+3*AW_O:

MW_MgO:=AW_Mg+AW_O:

MW_CaO:=AW_Ca+AW_O:

 

Gas constant (m³*Pa/[K*mol])

R_cst:=8.3144621:

 

Variables

 

 

with(PDEtools):
declare((Pct_Al_b(t),Pct_Al_i(t),Pct_Si_b(t),Pct_Si_i(t),Pct_SiO2_b(t),Pct_SiO2_i(t),Pct_Al2O3_b(t),Pct_Al2O3_i(t))(t),prime=t):

Equations

 

4 rate equations

 

 

Rate_eq1:=diff(Pct_Al_b(t),t)=-A_int*Rho_m*m_Al/W_m*(Pct_Al_b(t)-Pct_Al_i(t));

 

Rate_eq2:=diff(Pct_Si_b(t),t)=-A_int*Rho_m*m_Si/W_m*(Pct_Si_b(t)-Pct_Si_i(t));

 

Rate_eq3:=diff(Pct_SiO2_b(t),t)=-A_int*Rho_s*m_SiO2/W_s*(Pct_SiO2_b(t)-Pct_SiO2_i(t));

 

Rate_eq4:=diff(Pct_Al2O3_b(t),t)=-A_int*Rho_s*m_Al2O3/W_s*(Pct_Al2O3_b(t)-Pct_Al2O3_i(t));

 

3 mass balance equations

 

 

Mass_eq1:=0=(Pct_Al_b(t)-Pct_Al_i(t))+4*AW_Al/(3*AW_Si)*(Pct_Si_b(t)-Pct_Si_i(t));

 

Mass_eq2:=0=(Pct_Al_b(t)-Pct_Al_i(t))+4*Rho_s*m_SiO2*W_m*AW_Al/(3*Rho_m*m_Al*W_s*MW_SiO2)*(Pct_SiO2_b(t)-Pct_SiO2_i(t));

 

Mass_eq3:=0=(Pct_Al_b(t)-Pct_Al_i(t))+2*Rho_s*m_Al2O3*W_m*AW_Al/(Rho_m*m_Al*W_s*MW_Al2O3)*(Pct_Al2O3_b(t)-Pct_Al2O3_i(t));

 

1 local equilibrium equation

 

 

Gibbs free energy of the reaction when all of the reactants and products are in their standard states (J/mol). Al and Si activities are in 1 wt pct standard state in liquid Fe. SiO2 and Al2O3 activities are in respect to pure solid state.

 

delta_G0:=-720680+133*T_proc:

 

Expression of mole fractions as a function of weight percentages (whereby MgO is not taken into account, but instead replaced by CaO ?)

x_Al2O3_i(t):=(Pct_Al2O3_i(t)/MW_Al2O3)/(Pct_Al2O3_i(t)/MW_Al2O3 + Pct_SiO2_i(t)/MW_SiO2 + (100-Pct_SiO2_i(t)-Pct_Al2O3_i(t))/MW_CaO);
x_SiO2_i(t):=(Pct_SiO2_i(t)/MW_SiO2)/(Pct_Al2O3_i(t)/MW_Al2O3 + Pct_SiO2_i(t)/MW_SiO2 + (100-Pct_SiO2_i(t)-Pct_Al2O3_i(t))/MW_CaO);

 

Activity coefficients

Gamma_Al_Hry:=1: because very low percentage present  during the process (~Henry's law)

Gamma_Si_Hry:=1: because very low percentage present  during the process (~Henry's law)

Gamma_Al2O3_Ra:=1: temporary value!

Gamma_SiO2_Ra:=10^(-4.85279678314968+0.457486603678622*Pct_SiO2_b(t)); very small activity coefficient?
plot(10^(-4.85279678314968+0.457486603678622*Pct_SiO2_b),Pct_SiO2_b=3..7);

 

Activities of components

a_Al_Hry:=Gamma_Al_Hry*Pct_Al_i(t);
a_Si_Hry:=Gamma_Si_Hry*Pct_Si_i(t);
a_Al2O3_Ra:=Gamma_Al2O3_Ra*x_Al2O3_i(t);
a_SiO2_Ra:=Gamma_SiO2_Ra*x_SiO2_i(t);

 

Expressions for the equilibrium constant K

K_cst:=exp(-delta_G0/(R_cst*T_proc));

Equil_eq:=0=K_cst*a_Al_Hry^4*a_SiO2_Ra^3-a_Si_Hry^3*a_Al2O3_Ra^2;

 

Output

 

 

with(ListTools):
dsys:=Rate_eq1,Rate_eq2,Rate_eq3,Rate_eq4:
dvars:={Pct_Al2O3_b(t),Pct_SiO2_b(t),Pct_Al_b(t),Pct_Si_b(t)}:
dconds:=Pct_Al2O3_b(0)=Pct_Al2O3_b0,Pct_SiO2_b(0)=Pct_SiO2_b0,Pct_Si_b(0)=Pct_Si_b0,Pct_Al_b(0)=Pct_Al_b0:
dsol:=dsolve({dsys,dconds},dvars):

Pct_Al2O3_b(t):=rhs(select(has,dsol,Pct_Al2O3_b)[1]);
Pct_Al_b(t):=rhs(select(has,dsol,Pct_Al_b)[1]);
Pct_SiO2_b(t):=rhs(select(has,dsol,Pct_SiO2_b)[1]);
Pct_Si_b(t):=rhs(select(has,dsol,Pct_Si_b)[1]);

sys:={Equil_eq,Mass_eq1,Mass_eq2,Mass_eq3}:
vars:={Pct_Al2O3_i(t),Pct_SiO2_i(t),Pct_Al_i(t),Pct_Si_i(t)}:
sol:=solve(sys,vars);

,


Download Park_-_mixed_control_model.mw

How about this equation

restart:
solve(x^2 - 2*(m+1)*x+m^2 - 2*m + m^2=0,{x},parametric=full);
allvalues(%);?

1 2 3 4 5 6 7 Last Page 1 of 34