Items tagged with solve solve Tagged Items Feed

i solve 4 ODE with boundary condition.. i try to plot a graph F(eta) with different value of M.. but it doesnt comeout.. anyone can help me please??

restart; with*plots; n := .2; B := .5; R := 2; N := 10

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0

(1)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0;

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(2)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0;

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(3)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0;

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(4)

bcs1 := f(0) = R, (D(f))(0) = 1, (D(f))(N) = 0, F(N) = 0, G(N) = -f(N), H(N) = n;

f(0) = 2, (D(f))(0) = 1, (D(f))(10) = 0, F(10) = 0, G(10) = -f(10), H(10) = .2

(5)

L := [2, 3, 5];

[2, 3, 5]

(6)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, bcs1}, M = L[k]), [f(eta), F(eta), G(eta), H(eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YR || k := rhs(R[7]) end do:

odeplot(R, [eta, f(eta)], 0 .. 10);

odeplot([eta = proc (eta) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); _solnproc := _dat[1]; if member(eta, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(eta, `=`) and member(lhs(eta), ["initial", 'initial']) then if type(rhs(eta), 'list') then _res := _solnproc("initial" = [0, op(rhs(eta))]) else _res := _solnproc("initial" = [1, rhs(eta)]) end if; if type(_res, 'list') then return _res[1] end if elif eta = "sysvars" then return _dat[3] end if; eta end proc, f(eta) = proc (eta) local res, data, solnproc, `f(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `f(eta)` := pointto(data[2][2]); return ('`f(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, diff(f(eta), eta) = proc (eta) local res, data, solnproc, `diff(f(eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(f(eta),eta)` := pointto(data[2][3]); return ('`diff(f(eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, diff(diff(f(eta), eta), eta) = proc (eta) local res, data, solnproc, `diff(diff(f(eta),eta),eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `diff(diff(f(eta),eta),eta)` := pointto(data[2][4]); return ('`diff(diff(f(eta),eta),eta)`')(eta) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, F(eta) = proc (eta) local res, data, solnproc, `F(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `F(eta)` := pointto(data[2][5]); return ('`F(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc, G(eta) = proc (eta) local res, data, solnproc, `G(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `G(eta)` := pointto(data[2][6]); return ('`G(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[6] catch: error  end try end proc, H(eta) = proc (eta) local res, data, solnproc, `H(eta)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = 2.0, (1, 2) = 1.0, (1, 3) = -3.6635195629241393, (1, 4) = 0.5664455547330383e-1, (1, 5) = -2.257448492818163, (1, 6) = .2000045400222303, (2, 1) = 2.1585646422867106, (2, 2) = .4190953434097267, (2, 3) = -1.5353639315426824, (2, 4) = 0.23739324976304817e-1, (2, 5) = -2.266472656603632, (2, 6) = .20000079253347625, (3, 1) = 2.2256794646729534, (3, 2) = .1732188888188128, (3, 3) = -.6345907597520679, (3, 4) = 0.9811836751309456e-2, (3, 5) = -2.2702817767717014, (3, 6) = .20000013503934225, (4, 1) = 2.253701827323839, (4, 2) = 0.7055841966143796e-1, (4, 3) = -.25849213901493645, (4, 4) = 0.3996720985706207e-2, (4, 5) = -2.271870358726635, (4, 6) = .20000002238206496, (5, 1) = 2.2652356250281156, (5, 2) = 0.28304128061312158e-1, (5, 3) = -.10369272213335051, (5, 4) = 0.16032629370674866e-2, (5, 5) = -2.2725238941421693, (5, 6) = .20000000360006479, (6, 1) = 2.26991193450931, (6, 2) = 0.11172377576572433e-1, (6, 3) = -0.4093022194751972e-1, (6, 4) = 0.6328496945703798e-3, (6, 5) = -2.2727888141966752, (6, 6) = .2000000005608222, (7, 1) = 2.27177850048646, (7, 2) = 0.43341769160095515e-2, (7, 3) = -0.158783411959884e-1, (7, 4) = 0.24550571412224227e-3, (7, 5) = -2.2728945496311734, (7, 6) = .20000000008439528, (8, 1) = 2.2725154448203364, (8, 2) = 0.16343670553362268e-2, (8, 3) = -0.5987535406834639e-2, (8, 4) = 0.9257731255239544e-4, (8, 5) = -2.2729362940302473, (8, 6) = .20000000001200044, (9, 1) = 2.272799298891629, (9, 2) = 0.5944621596263174e-3, (9, 3) = -0.2177823651770427e-2, (9, 4) = 0.3367279643313292e-4, (9, 5) = -2.272952372817689, (9, 6) = .2000000000015876, (10, 1) = 2.2729048812302604, (10, 2) = 0.20765921421315688e-3, (10, 3) = -0.7607635589551353e-3, (10, 4) = 0.11762677126566138e-4, (10, 5) = -2.272958353454059, (10, 6) = .20000000000019372, (11, 1) = 2.2729426475725667, (11, 2) = 0.6930148666691294e-4, (11, 3) = -0.2538873405515502e-3, (11, 4) = 0.3925522954238184e-5, (11, 5) = -2.2729604926979117, (11, 6) = .20000000000002158, (12, 1) = 2.272955568683781, (12, 2) = 0.2196474511965646e-4, (12, 3) = -0.8046826976635028e-4, (12, 4) = 0.12441740473087036e-5, (12, 5) = -2.2729612246033346, (12, 6) = .20000000000000212, (13, 1) = 2.272959741660287, (13, 2) = 0.6676964756121347e-5, (13, 3) = -0.24461189888116446e-4, (13, 4) = 0.37821091112128746e-6, (13, 5) = -2.272961460978012, (13, 6) = .20000000000000018, (14, 1) = 2.2729610309665778, (14, 2) = 0.19535661469372987e-5, (14, 3) = -0.7156927469988826e-5, (14, 4) = 0.11065806984458966e-6, (14, 5) = -2.272961534009656, (14, 6) = .20000000000000007, (15, 1) = 2.2729614146384676, (15, 2) = 0.5479767419950037e-6, (15, 3) = -0.20075234226639988e-5, (15, 4) = 0.3103967002724004e-7, (15, 5) = -2.272961555742421, (15, 6) = .2, (16, 1) = 2.272961524178185, (16, 2) = 0.14667586063369783e-6, (16, 3) = -0.537349860305963e-6, (16, 4) = 0.8308327639763628e-8, (16, 5) = -2.272961561947204, (16, 6) = .2, (17, 1) = 2.2729615538420798, (17, 2) = 0.3800160977592546e-7, (17, 3) = -0.13921963448111635e-6, (17, 4) = 0.2152568407973205e-8, (17, 5) = -2.2729615636274887, (17, 6) = .2, (18, 1) = 2.2729615615729086, (18, 2) = 0.9679561461926475e-8, (18, 3) = -0.3546126115859928e-7, (18, 4) = 0.5482904022821568e-9, (18, 5) = -2.2729615640653966, (18, 6) = .2, (19, 1) = 2.2729615635538627, (19, 2) = 0.2422302810354404e-8, (19, 3) = -0.887415332982281e-8, (19, 4) = 0.1372092429861907e-9, (19, 5) = -2.2729615641776046, (19, 6) = .2, (20, 1) = 2.2729615640525562, (20, 2) = 0.5953273783129685e-9, (20, 3) = -0.2180993399969996e-8, (20, 4) = 0.33721794108851795e-10, (20, 5) = -2.2729615642058527, (20, 6) = .2, (21, 1) = 2.2729615641754815, (21, 2) = 0.1449905234394885e-9, (21, 3) = -0.5311755988963094e-9, (21, 4) = 0.8212850309939671e-11, (21, 5) = -2.272961564212815, (21, 6) = .2, (22, 1) = 2.2729615642054646, (22, 2) = 0.35141204232587883e-10, (22, 3) = -0.1287404896150451e-9, (22, 4) = 0.1990529319364229e-11, (22, 5) = -2.272961564214514, (22, 6) = .2, (23, 1) = 2.2729615642127436, (23, 2) = 0.8475375824080267e-11, (23, 3) = -0.31049713824358454e-10, (23, 4) = 0.4800654088689372e-12, (23, 5) = -2.272961564214928, (23, 6) = .2, (24, 1) = 2.2729615642145027, (24, 2) = 0.2035026044727397e-11, (24, 3) = -0.7455373957382428e-11, (24, 4) = 0.1152563122926313e-12, (24, 5) = -2.2729615642150267, (24, 6) = .2, (25, 1) = 2.272961564214925, (25, 2) = 0.4878470512049615e-12, (25, 3) = -0.17872647776069955e-11, (25, 4) = 0.27616758209130112e-13, (25, 5) = -2.2729615642150507, (25, 6) = .2, (26, 1) = 2.272961564215026, (26, 2) = 0.11680457358602633e-12, (26, 3) = -0.4279624747605665e-12, (26, 4) = 0.6598695925952555e-14, (26, 5) = -2.272961564215056, (26, 6) = .2, (27, 1) = 2.2729615642150507, (27, 2) = 0.2792139704425265e-13, (27, 3) = -0.102369938457817e-12, (27, 4) = 0.15638227918490053e-14, (27, 5) = -2.272961564215056, (27, 6) = .2, (28, 1) = 2.272961564215056, (28, 2) = 0.7229355869199076e-14, (28, 3) = -0.26616390820104455e-13, (28, 4) = 0.39247571566227624e-15, (28, 5) = -2.272961564215058, (28, 6) = .2, (29, 1) = 2.272961564215057, (29, 2) = 0.22004123056338692e-14, (29, 3) = -0.8265952539377097e-14, (29, 4) = 0.1094750766735948e-15, (29, 5) = -2.272961564215058, (29, 6) = .2, (30, 1) = 2.272961564215058, (30, 2) = 0.7209052523906788e-15, (30, 3) = -0.2945870798181565e-14, (30, 4) = 0.2889761259240128e-16, (30, 5) = -2.272961564215058, (30, 6) = .2, (31, 1) = 2.272961564215058, (31, 2) = 0.21108792459646215e-15, (31, 3) = -0.12124057648366197e-14, (31, 4) = 0.493978978622271e-17, (31, 5) = -2.272961564215058, (31, 6) = .2, (32, 1) = 2.272961564215058, (32, 2) = -0.34565573544868623e-39, (32, 3) = -0.6161789643304945e-15, (32, 4) = .0, (32, 5) = -2.272961564215058, (32, 6) = .2}, datatype = float[8], order = C_order); YP := Matrix(32, 6, {(1, 1) = 1.0, (1, 2) = -3.6635195629241393, (1, 3) = 13.421376811728292, (1, 4) = -.20752150850350098, (1, 5) = -0.5702200817365455e-1, (1, 6) = -0.33441406948581164e-4, (2, 1) = .4190953434097267, (2, 2) = -1.5353639315426824, (2, 3) = 5.62483567809648, (2, 4) = -0.8696970293996903e-1, (2, 5) = -0.23805276009511732e-1, (2, 6) = -0.5819729998219887e-5, (3, 1) = .1732188888188128, (3, 2) = -.6345907597520679, (3, 3) = 2.3248355662290145, (3, 4) = -0.3594587012426331e-1, (3, 5) = -0.9823078473142581e-2, (3, 6) = -0.99033781079722e-6, (4, 1) = 0.7055841966143796e-1, (4, 2) = -.25849213901493645, (4, 3) = .9469909655515867, (4, 4) = -0.14642065922226735e-1, (4, 5) = -0.3998584543569432e-2, (4, 6) = -0.1640549659580179e-6, (5, 1) = 0.28304128061312158e-1, (5, 2) = -.10369272213335051, (5, 3) = .3798802987649658, (5, 4) = -0.5873584935447072e-2, (5, 5) = -0.1603562702429767e-2, (5, 6) = -0.2638171316255536e-7, (6, 1) = 0.11172377576572433e-1, (6, 2) = -0.4093022194751972e-1, (6, 3) = .14994866197552117, (6, 4) = -0.2318457134842765e-2, (6, 5) = -0.632896393495785e-3, (6, 6) = -0.410939417418392e-8, (7, 1) = 0.43341769160095515e-2, (7, 2) = -0.158783411959884e-1, (7, 3) = 0.58170610942383204e-1, (7, 4) = -0.8994149456778433e-3, (7, 5) = -0.245512741647959e-3, (7, 6) = -0.6183767474075503e-9, (8, 1) = 0.16343670553362268e-2, (8, 2) = -0.5987535406834639e-2, (8, 3) = 0.2193545209508067e-1, (8, 4) = -0.33915878014610895e-3, (8, 5) = -0.9257831181108378e-4, (8, 6) = -0.8792668070115729e-10, (9, 1) = 0.5944621596263174e-3, (9, 2) = -0.2177823651770427e-2, (9, 3) = 0.7978499188564012e-2, (9, 4) = -0.12336094283919372e-3, (9, 5) = -0.3367292863031933e-4, (9, 6) = -0.1163219861161677e-10, (10, 1) = 0.20765921421315688e-3, (10, 2) = -0.7607635589551353e-3, (10, 3) = 0.2787072053734942e-2, (10, 4) = -0.43092795797985974e-4, (10, 5) = -0.11762693257738654e-4, (10, 6) = -0.14194018114608768e-11, (11, 1) = 0.6930148666691294e-4, (11, 2) = -0.2538873405515502e-3, (11, 3) = 0.9301211964202853e-3, (11, 4) = -0.1438122948094343e-4, (11, 5) = -0.3925524751156479e-5, (11, 6) = -0.158111197895827e-12, (12, 1) = 0.2196474511965646e-4, (12, 2) = -0.8046826976635028e-4, (12, 3) = 0.29479706702331985e-3, (12, 4) = -0.4558055753904399e-5, (12, 5) = -0.12441742279568096e-5, (12, 6) = -0.1589362926141487e-13, (13, 1) = 0.6676964756121347e-5, (13, 2) = -0.24461189888116446e-4, (13, 3) = 0.8961404359576148e-4, (13, 4) = -0.13855830085660227e-5, (13, 5) = -0.378210927593074e-6, (13, 6) = -0.14526894464671326e-14, (14, 1) = 0.19535661469372987e-5, (14, 2) = -0.7156927469988826e-5, (14, 3) = 0.26219542599555274e-4, (14, 4) = -0.4053979851896744e-6, (14, 5) = -0.11065807115009369e-6, (14, 6) = -0.11174533485504098e-15, (15, 1) = 0.5479767419950037e-6, (15, 2) = -0.20075234226639988e-5, (15, 3) = 0.7354600996148526e-5, (15, 4) = -0.1137144332104626e-6, (15, 5) = -0.31039670040614475e-7, (15, 6) = -.0, (16, 1) = 0.14667586063369783e-6, (16, 2) = -0.537349860305963e-6, (16, 3) = 0.1968591635479667e-5, (16, 4) = -0.304377194872888e-7, (16, 5) = -0.8308327702440065e-8, (16, 6) = -0.8595794777543107e-17, (17, 1) = 0.3800160977592546e-7, (17, 2) = -0.13921963448111635e-6, (17, 3) = 0.5100338311760695e-6, (17, 4) = -0.7885976149432237e-8, (17, 5) = -0.2152568060143866e-8, (17, 6) = 0.3438317905933696e-16, (18, 1) = 0.9679561461926475e-8, (18, 2) = -0.3546126115859928e-7, (18, 3) = 0.12991301804768527e-6, (18, 4) = -0.2008672562573159e-8, (18, 5) = -0.5482908363217248e-9, (18, 6) = -0.3438317904608846e-16, (19, 1) = 0.2422302810354404e-8, (19, 2) = -0.887415332982281e-8, (19, 3) = 0.3251063284214716e-7, (19, 4) = -0.502668765575309e-9, (19, 5) = -0.1372090836931743e-9, (19, 6) = 0.17191589521346858e-16, (20, 1) = 0.5953273783129685e-9, (20, 2) = -0.2180993399969996e-8, (20, 3) = 0.7990111619923773e-8, (20, 4) = -0.1235404929511118e-9, (20, 5) = -0.3372175073917995e-10, (20, 6) = -.0, (21, 1) = 0.1449905234394885e-9, (21, 2) = -0.5311755988963094e-9, (21, 3) = 0.1945972104650623e-8, (21, 4) = -0.3008798637050063e-10, (21, 5) = -0.8212565553567704e-11, (21, 6) = 0.25787384281221336e-16, (22, 1) = 0.35141204232587883e-10, (22, 2) = -0.1287404896150451e-9, (22, 3) = 0.4716432733074871e-9, (22, 4) = -0.7292396720459258e-11, (22, 5) = -0.1990620072856783e-11, (22, 6) = -0.8595794760394263e-17, (23, 1) = 0.8475375824080267e-11, (23, 2) = -0.31049713824358454e-10, (23, 3) = 0.11375121626456616e-9, (23, 4) = -0.17587869810663557e-11, (23, 5) = -0.4805349236090068e-12, (23, 6) = -0.4297897380195565e-16, (24, 1) = 0.2035026044727397e-11, (24, 2) = -0.7455373957382428e-11, (24, 3) = 0.27312885648860637e-10, (24, 4) = -0.4223058063671518e-12, (24, 5) = -0.11527367551506473e-12, (24, 6) = -.0, (25, 1) = 0.4878470512049615e-12, (25, 2) = -0.17872647776069955e-11, (25, 3) = 0.65476424299004655e-11, (25, 4) = -0.10124022778070311e-12, (25, 5) = -0.27646144212510994e-13, (25, 6) = -.0, (26, 1) = 0.11680457358602633e-12, (26, 2) = -0.4279624747605665e-12, (26, 3) = 0.15677857117532634e-11, (26, 4) = -0.24242793937901928e-13, (26, 5) = -0.6642889775444323e-14, (26, 6) = -.0, (27, 1) = 0.2792139704425265e-13, (27, 2) = -0.102369938457817e-12, (27, 3) = 0.3749256780921826e-12, (27, 4) = -0.57980686227542876e-14, (27, 5) = -0.11722746662548804e-14, (27, 6) = 0.3438317904156065e-16, (28, 1) = 0.7229355869199076e-14, (28, 2) = -0.26616390820104455e-13, (28, 3) = 0.9732850067357298e-13, (28, 4) = -0.15039585933116824e-14, (28, 5) = -0.3907582220849598e-15, (28, 6) = -.0, (29, 1) = 0.22004123056338692e-14, (29, 2) = -0.8265952539377097e-14, (29, 3) = 0.2999934766469537e-13, (29, 4) = -0.4599587740240465e-15, (29, 5) = -0.1953791110424799e-15, (29, 6) = -0.859579476039015e-17, (30, 1) = 0.7209052523906788e-15, (30, 2) = -0.2945870798181565e-14, (30, 3) = 0.10369578123343452e-13, (30, 4) = -0.15222598804420496e-15, (30, 5) = .0, (30, 6) = -.0, (31, 1) = 0.21108792459646215e-15, (31, 2) = -0.12124057648366197e-14, (31, 3) = 0.38318061401697315e-14, (31, 4) = -0.4534791482086289e-16, (31, 5) = .0, (31, 6) = -.0, (32, 1) = -0.34565573544868623e-39, (32, 2) = -0.6161789643304945e-15, (32, 3) = 0.14005511026010551e-14, (32, 4) = 0.7603642333654124e-40, (32, 5) = .0, (32, 6) = -.0}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(32, {(1) = .0, (2) = .23738292772542516, (3) = .4785560381516835, (4) = .7237068936662285, (5) = .9730390563893319, (6) = 1.2267740667509117, (7) = 1.485244856033515, (8) = 1.7514578053505616, (9) = 2.0275186342286915, (10) = 2.314608495795922, (11) = 2.6141654179212277, (12) = 2.9278058961214626, (13) = 3.2528414943537864, (14) = 3.5883120932734123, (15) = 3.935292305144063, (16) = 4.295051734960197, (17) = 4.66370117321776, (18) = 5.036986867849653, (19) = 5.415088268290482, (20) = 5.798104252866241, (21) = 6.18357845672341, (22) = 6.570352338347138, (23) = 6.958439133174796, (24) = 7.347706619144922, (25) = 7.7373742377151125, (26) = 8.12732478470241, (27) = 8.517558877286204, (28) = 8.885300984940212, (29) = 9.205784697647944, (30) = 9.493254557635485, (31) = 9.756201127790266, (32) = 10.0}, datatype = float[8], order = C_order); Y := Matrix(32, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = -0.9684278254138667e-13, (1, 4) = 0.24793784560865875e-12, (1, 5) = -0.6074803961513833e-13, (1, 6) = -0.2559292546219694e-15, (2, 1) = 0.16532517766308446e-7, (2, 2) = -0.6056717684239824e-7, (2, 3) = 0.2218890054590015e-6, (2, 4) = -0.34307381915885136e-8, (2, 5) = -0.9392183387136674e-9, (2, 6) = -0.2408512297751391e-12, (3, 1) = 0.56478498238281e-8, (3, 2) = -0.20690990701074774e-7, (3, 3) = 0.758018384288055e-7, (3, 4) = -0.11720072209219468e-8, (3, 5) = -0.3195014467464516e-9, (3, 6) = 0.3656143144594534e-13, (4, 1) = -0.5514557623213443e-11, (4, 2) = 0.20206908133809278e-10, (4, 3) = -0.7402934420152172e-10, (4, 4) = 0.11463005793065814e-11, (4, 5) = 0.4788442881314739e-12, (4, 6) = 0.15156368565892247e-13, (5, 1) = -0.10750717286497465e-8, (5, 2) = 0.393856599359685e-8, (5, 3) = -0.14429012486996655e-7, (5, 4) = 0.22309675540634938e-9, (5, 5) = 0.6089354099132634e-10, (5, 6) = -0.13714292955626477e-15, (6, 1) = -0.6866914044137568e-9, (6, 2) = 0.2515726469981587e-8, (6, 3) = -0.9216412259476526e-8, (6, 4) = 0.1425011669767676e-9, (6, 5) = 0.38877698000868683e-10, (6, 6) = -0.12335124443224783e-14, (7, 1) = -0.23230905524500875e-9, (7, 2) = 0.8510768182345909e-9, (7, 3) = -0.31179361695336254e-8, (7, 4) = 0.48208523985297926e-10, (7, 5) = 0.13144851998407548e-10, (7, 6) = -0.42608996581296306e-15, (8, 1) = -0.33744233921443493e-11, (8, 2) = 0.1237596651318376e-10, (8, 3) = -0.4533943558974563e-10, (8, 4) = 0.7010332403506721e-12, (8, 5) = 0.1863517489136765e-12, (8, 6) = -0.32597874864804974e-15, (9, 1) = 0.6035261538451868e-10, (9, 2) = -0.2210915473113484e-9, (9, 3) = 0.8099732525557996e-9, (9, 4) = -0.12523536363279133e-10, (9, 5) = -0.34244323528565167e-11, (9, 6) = 0.4118892227963015e-16, (10, 1) = 0.52642162004415076e-10, (10, 2) = -0.19284979253083597e-9, (10, 3) = 0.7065089907803169e-9, (10, 4) = -0.109238085521299e-10, (10, 5) = -0.2985816028091057e-11, (10, 6) = 0.7275713364065007e-16, (11, 1) = 0.29102734817932872e-10, (11, 2) = -0.1066007130556671e-9, (11, 3) = 0.39053379416815775e-9, (11, 4) = -0.6038304836406409e-11, (11, 5) = -0.1649927230771947e-11, (11, 6) = 0.5522923898820978e-16, (12, 1) = 0.10938836216895846e-10, (12, 2) = -0.4006148021954623e-10, (12, 3) = 0.14676601478798824e-9, (12, 4) = -0.22692478106265015e-11, (12, 5) = -0.6224970343841889e-12, (12, 6) = 0.19981453259322204e-15, (13, 1) = 0.1577494327091353e-11, (13, 2) = -0.5771435141951299e-11, (13, 3) = 0.2114376611016288e-10, (13, 4) = -0.3269179486933131e-12, (13, 5) = -0.9208225337763152e-13, (13, 6) = 0.1430164415377812e-15, (14, 1) = -0.16572549877025404e-11, (14, 2) = 0.6094888675963528e-11, (14, 3) = -0.2232874254956181e-10, (14, 4) = 0.3452396733161816e-12, (14, 5) = 0.8699402636577551e-13, (14, 6) = -0.9223181910605597e-16, (15, 1) = -0.19922544010413503e-11, (15, 2) = 0.7309010738787319e-11, (15, 3) = -0.2677670258137401e-10, (15, 4) = 0.41401255161124184e-12, (15, 5) = 0.1091726150539443e-12, (15, 6) = .0, (16, 1) = -0.1413231003575007e-11, (16, 2) = 0.5195618033454983e-11, (16, 3) = -0.1903424747293479e-10, (16, 4) = 0.2943012368339272e-12, (16, 5) = 0.7787179461870995e-13, (16, 6) = .0, (17, 1) = -0.8013072141572603e-12, (17, 2) = 0.29490063997697188e-11, (17, 3) = -0.10803742173900677e-10, (17, 4) = 0.16704385302706166e-12, (17, 5) = 0.39982443808968294e-13, (17, 6) = .0, (18, 1) = -0.3902882989883457e-12, (18, 2) = 0.14511241461305278e-11, (18, 3) = -0.5316221477234938e-11, (18, 4) = 0.821975990675695e-13, (18, 5) = 0.20422144231829056e-13, (18, 6) = .0, (19, 1) = -0.17363794645181841e-12, (19, 2) = 0.6429854375582952e-12, (19, 3) = -0.23555896417852147e-11, (19, 4) = 0.3642127274187083e-13, (19, 5) = 0.52017143998469624e-14, (19, 6) = .0, (20, 1) = -0.6718278267234952e-13, (20, 2) = 0.26204028853300927e-12, (20, 3) = -0.9599897034099152e-12, (20, 4) = 0.1484295654133196e-13, (20, 5) = 0.6230621322720747e-15, (20, 6) = .0, (21, 1) = -0.25157775776546026e-13, (21, 2) = 0.9984935160981724e-13, (21, 3) = -0.36580006990891806e-12, (21, 4) = 0.5655783512014042e-14, (21, 5) = -0.4066617257236055e-14, (21, 6) = .0, (22, 1) = -0.35502686011159836e-14, (22, 2) = 0.3602175095655584e-13, (22, 3) = -0.13196643451776997e-12, (22, 4) = 0.20403164532880088e-14, (22, 5) = -0.5396119144289601e-14, (22, 6) = .0, (23, 1) = 0.10284508286104878e-14, (23, 2) = 0.12411539569819745e-13, (23, 3) = -0.4546999720190479e-13, (23, 4) = 0.7029285327698647e-15, (23, 5) = -0.7423652305785155e-15, (23, 6) = .0, (24, 1) = 0.173773594942215e-14, (24, 2) = 0.4112916487599153e-14, (24, 3) = -0.1506788151037804e-13, (24, 4) = 0.2328524844886688e-15, (24, 5) = -0.1856238287719891e-14, (24, 6) = .0, (25, 1) = 0.4344027029528252e-14, (25, 2) = 0.13196997514001117e-14, (25, 3) = -0.48349641384560675e-14, (25, 4) = 0.7462623553487176e-16, (25, 5) = -0.22193824282029186e-14, (25, 6) = .0, (26, 1) = 0.4460989674965387e-14, (26, 2) = 0.41194936326503473e-15, (26, 3) = -0.15095495409304056e-14, (26, 4) = 0.2320252873697474e-16, (26, 5) = -0.32766498475707286e-14, (26, 6) = .0, (27, 1) = 0.3696416138591636e-14, (27, 2) = 0.12549891970606628e-15, (27, 3) = -0.4603820220215734e-15, (27, 4) = 0.6975707272173805e-17, (27, 5) = -0.7039297413666171e-14, (27, 6) = .0, (28, 1) = 0.32766498475707286e-14, (28, 2) = 0.3929748094167081e-16, (28, 3) = -0.14497552584139333e-15, (28, 4) = 0.20985078767629603e-17, (28, 5) = -0.2715448065496867e-14, (28, 6) = .0, (29, 1) = 0.4191157171111337e-14, (29, 2) = 0.13487084044367167e-16, (29, 3) = -0.50969983278108777e-16, (29, 4) = 0.6505062556230812e-18, (29, 5) = -0.2715448065496867e-14, (29, 6) = .0, (30, 1) = 0.2715448065496867e-14, (30, 2) = 0.47867321313024425e-17, (30, 3) = -0.19848217818157185e-16, (30, 4) = 0.18189739941528604e-18, (30, 5) = -0.2715448065496867e-14, (30, 6) = .0, (31, 1) = 0.2715448065496867e-14, (31, 2) = 0.14776211487867332e-17, (31, 3) = -0.8731601790873086e-17, (31, 4) = 0.3127759816314512e-19, (31, 5) = -0.2715448065496867e-14, (31, 6) = .0, (32, 1) = 0.2715448065496867e-14, (32, 2) = 0.3600580577590624e-39, (32, 3) = -0.46433170515282995e-17, (32, 4) = .0, (32, 5) = -0.2715448065496867e-14, (32, 6) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [6, 32, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(6, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(6, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(32, 6, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)]'[i] = yout[i], i = 1 .. 6)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[32] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.218890054590015e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [6, 32, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[32] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[32] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(6, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0.}); `dsolve/numeric/hermite`(32, 6, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 6)] end proc, (2) = Array(1..7, {(1) = 18446744074221990414, (2) = 18446744074221990590, (3) = 18446744074221990766, (4) = 18446744074221990942, (5) = 18446744074221991118, (6) = 18446744074221991294, (7) = 18446744074221991470}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), F(eta), G(eta), H(eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `H(eta)` := pointto(data[2][7]); return ('`H(eta)`')(eta) end if end if; try res := solnproc(outpoint); res[7] catch: error  end try end proc], [eta, f(eta)], 0 .. 10)

(7)

``

(8)

print([(Y || (1 .. 3))(0)]);

[HFloat(0.0662575289978352), HFloat(0.06239249313847126), HFloat(0.05664455547330386)]

(9)

print([(YP || (1 .. 3))(0)]);

[HFloat(-2.308757932969589), HFloat(-2.2878028202715557), HFloat(-2.2574484928181637)]

(10)

print([(YR || (1 .. 3))(0)]);

[HFloat(0.20000866382583435), HFloat(0.20000675928400788), HFloat(0.2000045400222304)]

(11)

odeplots([Y || (1 .. 1)], 0 .. 10, labels = [eta, F(eta)]):

``


Download hydro92.mw

Hello

 

I would like to get Maple to solve a system of 3 equations, nonlinear. 

I use the solve command to get the correct solutions.

 

However I would like to see the steps, is there a way to do this?

 

Thanks

Hi.

 

Please, I need your help, to form and solve a linear system.

1) I want to solve the system (13) using "GenerateMatrix" , the system is   evaluated  at  point x[m]=-a+m*h, m=0..2N , In my code I get  equation (15), ( I think it's okay), I juste use subs, x=x[m].
My function, ph(x) approximate by phi[m]=phi(x[m]).  and I want to compute the vecteur [phi[1], phi[2],...,phi[2*N+1]] is my solution.

2) The nodes, are x[k]=-a+k*h, k=0..2*N;  I want to display these nodes in the x-axis, i write the code with the names of each point, but there is an error.

There is some a mistake in my code maple.

Here, my code.

Fred.mw

 

 

 

 

How can I use maple and separation of variables ,solve the wave equation utt=uxx for a string of lengh 4 with u(x,0)=sin (Pi/2 x) e-x . ut(x,0)=0.u(0,t)=0 and u(4,t)=0.

i am trying to solve 6 ODE with boundary condition


restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


Download hydro.mw

restart

with*plots

with*plots

(1)

Eq1 := (1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(1-theta(eta)/theta[r])*(diff(diff(diff(f(eta), eta), eta), eta))+(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(2)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) = 0

(3)

Eq3 := G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) = 0

(4)

Eq4 := G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta) = 0

(5)

Eq5 := (1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(1+s*theta(eta))*(diff(diff(theta(eta), eta), eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(theta[p](eta)-theta(eta)) = 0

(6)

Eq6 := 2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+L0*B*(theta[p](eta)-theta(eta)) = 0

(7)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0

(8)

fixedparameter := [M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1];

[M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1]

(9)

Eq7 := eval(Eq1, fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta)))) = 0

(10)

Eq8 := eval(Eq2, fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta)) = 0

(11)

Eq9 := eval(Eq3, fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta) = 0

(12)

Eq10 := eval(Eq5, fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(theta[p](eta)-theta(eta)) = 0

(13)

Eq11 := eval(Eq6, fixedparameter);

2*F(eta)*theta[p](eta)+G(eta)*(diff(theta[p](eta), eta))+.5*theta[p](eta)-.5*theta(eta) = 0

(14)

bcs2 := F(10) = 0;

F(10) = 0

(15)

bcs3 := G(10) = -f(10);

G(10) = -f(10)

(16)

bcs4 := H(10) = n;

H(10) = n

(17)

bcs5 := theta(10) = 0;

theta(10) = 0

(18)

bcs6 := theta[p](10) = 0;

theta[p](10) = 0

(19)

L := [.2];

[.2]

(20)

for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), theta[p](eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

``


then i get this error

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

i dont know where i need to change after view it one by one..

Download hydro.mw

How can I solve x^2 on -Pi..Pi and to evaluate this at x= Pi to prove that Sum(1/n^2, n= 1..infinity) = Pi^2/6.

 

Hello,

 

I am using Maple 17 to solve some equations. I am solving these equations with the solve command. There are some bounds on the parameters so I am including these inequalities. I have 4 variables, so I solve for 3 to get them in terms of the last one.

It returns piecewise solutions as per the inequalties as I hoped.

However for two ranges of the inequalities I get [] which I assume means no solution.

For another range I get an expression for each of my paramters.

For the final range I get 0 . What does this 0 mean and what do the [] mean?

 

I wondered if 0 meant that all paremeters equalling zero was a solution, but this is false.

 

Thanks

The equation

x^7+14*x^4+35*x^3+14*x^2+7*x+88 = 0

has the unique real root

x = (1+sqrt(2))^(1/7)+(1-sqrt(2))^(1/7)-(3+2*sqrt(2))^(1/7)-(3-2*sqrt(2))^(1/7).

Here is its verification:

Is it possible to find that in Maple? I unsuccessfully tried the solve command with the explicit option.

 

 

 

I was required to purchase Maple 17 for my upcoming Calculus III course, and until now, I have been using my TI-Nspire CAS CX for all of my CAS needs.  I am going through various tutorials/labs in an effort to learn how to use the Maple 17 Software. As a part of this process, I am attempting to solve a system of equations and was told to use the following command:

>solve({2*x+3*y=7,5*x+8*y=9},{x,y}); 

in order to receive the answer 

{y=-17,x=29}.

 

Instead, I have received the following error message, which has no help attached to it through the help page.

solve({2*x+3*y = 7, 5*x+8*y = 9}, {x, y});
Warning, solving for expressions other than names or functions is not recommended.

I am hoping this has something to do with Mac vs. Windows software, and that it has a simple solution.  I would greatly appreciate any guidance!

How to solve for m?...

March 27 2014 J4James 175

Hello,

restart:

F+(1/4)*(4*(-Lambda)^(3/2)*h*m^2-2*sqrt(-Lambda)*exp(Lambda*h^2*m^2)*h*m+sqrt(Pi)*erf(h*m*sqrt(-Lambda)))/(m^2*(-Lambda)^(3/2)) = 0;

how to solve this for m for real roots, where the rest are constants with Lambda>0.

 

 

Dear all;

Please give me few minutes to correct the output of this procedure.Many thinks. 
We will solve the waves equations: diff(f(x,y,t),t$2)=c^2*( diff(f(x,y,t),x$2) +diff(f(x,y,t),y$2));  where (x,y,t) in [0,1]*[0,1]*[0,T] using finite difference.  With Initial boundary conditions: [u(0,y,t)=u(1,y,t)=0],   [u(x,0,t)=u(x,1,t)=0],  [u(x,y,0)=f(x,y),   diff(u(x,y,0),t)=g(x,y)]... The code is done and perfect but....The output of this procedure is Nothing. How can I plot the solution...

f:=(x,y)->x*(x-1)*y*(y-1);
g:=(x,y)->0;
analytical_sol:=proc(dx,dy,dt,Tf)
local Ft, Fx,Fy,x,y, c1,c2,c,j,k,i,u;
Ft := floor(Tf/dt)+1;
Fx := floor(1/dx)+1;
Fy := floor(1/dy)+1;
x:=[seq(0..1,dx)]:
y:=[seq(0..1,dy)]:
c1 := (c*dt/dx)^2;
c2 := (c*dt/dy)^2;
#Initial position
for j from  1 to Fx do  
   for k from 1 to Fy do
  u[j,k,1] := f(-dx + j*dx, -dy + k*dy) -dt*g(-dx+j*dx, -dy + k*dy);
   u[j,k,2] := f(-dx + j*dx, -dy +k*dy);
end do;
end do;

# Boundary values j=1
for i from  1 to Ft +1 do
      for k from 1 to Fy do
         u[1,k,i] := 0;
      end do;
      for k from 1 to Fy do
         u[Fx,k,i] := 0;
      end do;

     for j from 1 to Fx do
         u[j,1,i] := 0;
      end do;
   
   for j from 1 to Fx do
         u[j,Fy,i] := 0;
      end do;
end do;

for i from 3 to Ft + 1 do
  for j from 2 to Fx-1 do
    for k from 2 to Fy-1 do
u[j, k, i] := 2*u[j,k,i-1] - u[j,k,i-2] + c1*(u[j+1,k,i-1]-2*u[j,k,i-1]+u[j-1,k,i-1]) + c2*(u[j,k+1,i-1] - 2*u[j, k, i-1] + u[j,k-1, i-1]);
end do;
end do;
end do;
return Matrix([seq([seq([seq(u[i,j,k],i=1..Fx)],j=1..Fy)],k=1..Ft)]):
end proc:

## Try the test
f:=(x, y) -> x (x - 1) y (y - 1)
g:=(x, y) -> 0;
analytical_sol(0.1,0.1,0.1,2);
                      

Hello,

Anyone can help me with the problem ?

I want to solve b1..b50

> restart; with(plots); with(LinearAlgebra); with(Statistics);
> m0 := proc (t) options operator, arrow; 1-exp((-1)*t*.5) end proc;
t -> 1 - exp((-1) t 0.5)
> m := proc (t) options operator, arrow; (1/(1+exp(-t+5))-0.67e-2)*1.0067 end proc;
/ 1 \
t -> |--------------- - 0.0067| 1.0067
\1 + exp(-t + 5) /
> n[max] := 10; delt := .2; n := n[max]/delt;
10
0.2
50.00000000
> T := Vector(50);
> b := vector(50); evalm(b);

> for i from 2 to n do T[i] := T[i-1]+delt end do;
> fun := proc (t) options operator, arrow; add(b[i]*m0(t-T[i]), i = 1 .. n) end proc;
> fun(t);
> fu := vector(50);

> for x to 49 do fu[x] := fun(x*delt) = m(x*delt) end do;
> s := solve({fu[1 .. 50]}, {b[1 .. 50]});

 

 

Thanks,

gerst

When trying to solve a set of partial differential equations, I always get the following error. I don't know what it means. Can somebody help me?

 

Hi MaplePrime-ers!

I've been using the Maple(17) toolbox in Matlab(2012b) to quickly enumerate systems of equations by: (i) solving them symbolically, (ii) using unapply to make them functions, (iii) then supplying the points (driver equations) to get the system solution.  Speed is a must, because there may be 3 million+ systems to solve.  Symbolics is also very important because I am evaluating topology, so the structure of the equations may change, and therefore a functional approach will not work.

I have had success (seen in the first code snippet).  I would like similiar behaviour in the second code snippet, but sometimes I get 'solutions may be lost' as an error message,  or 'Error, (in unapply) variables must be unique and of type name'

The system of equations include:  Linear equations, 5th order polynomials, absolute functions, and pieceiwse functions.

Here is code with a topology that solves:

#Interconnection Equations
eq2[1] := FD_T + EM2_T = 0;
eq2[2] := ICE_T + GEN_T = 0;
eq2[3] := EM2_A + GEN_A + BAT_A = 0;
eq2[4] := -FD_W + EM2_W = 0;
eq2[5] := -ICE_W + GEN_W = 0;
eq2[6] := -EM2_V + GEN_V = 0;
eq2[7] := -EM2_V + BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#ASSUMPTIONS
assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

#FINAL EQUATIONS

sys_eqs2 := convert(eq2,set) union {eq_c[1],eq_c[2],eq_c[3],eq_c[4],eq_c[5],eq_c[6]};

#Selecting which variables to solve for:

drivers2:= { ICE_T,ICE_W,FD_T,FD_W};
symvarnames2:=select(type,indets(convert(sys_eqs2,list)),name);
notdrivers2:=symvarnames2 minus drivers2;


#Symbolic solve

sol2:=solve(sys_eqs2,notdrivers2) assuming real:
symb_sol2:=unapply(sol2,convert(drivers2,list)):


#Enumerate (there will generally be about 40, not 6)

count := 0;
for i1 from 1 to 40 do
     for i2 from 1 to 40 do
          for i3 from 1 to 40 do
               for i4 from 1 to 40 do
                    count := count + 1;
                    solsol2(count) := symb_sol2(i1,i2,i3,i4);
               od;
          od;
     od;
od;
count;



This works great!  I would like simliar output in my second code snippet, but this time with more inputs to symb_sol.  However, if I try and change the interconnection equations a little, and add a piecewise function, and another driver... (differences in bold)

#Interconnection Equations
eq1[1] := FD_T+EM2_T = 0;
eq1[2] := ICE_T+GBb_T = 0;
eq1[3] := GEN_T+GBa_T = 0;
eq1[4] := EM2_A+GEN_A+BAT_A = 0;
eq1[5] := -FD_W+EM2_W = 0;
eq1[6] := -GEN_W+GBa_W = 0;
eq1[7] := -ICE_W+GBb_W = 0;
eq1[8] := -EM2_V+GEN_V = 0;
eq1[9] := -EM2_V+BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g=((671.5) + (-21.94)*ICE_T + (0.1942)*ICE_W + (0.5113)*ICE_T^2 + (-0.01271)*ICE_T*ICE_W + ( -0.0008761)*ICE_W^2 + (-0.006071)*ICE_T^3 + (9.867e-07)*ICE_T^2*ICE_W + (5.616e-05)*ICE_T*ICE_W^2 + (1.588e-06)*ICE_W^3 + (3.61e-05)*ICE_T^4 + (8.98e-07)*ICE_T^3*ICE_W + (-2.814e-07)*ICE_T^2*ICE_W^2 + (-8.121e-08)*ICE_T*ICE_W^3 + ( -8.494e-08 )*ICE_T^5 + (-2.444e-09)*ICE_T^4*ICE_W + (-9.311e-10)*ICE_T^3*ICE_W^2 + ( 5.835e-10)*ICE_T^2*ICE_W^3 ) *1/3600/1000 * ICE_T * ICE_W;

#BAT
eq_c[2] := BAT = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T = 0, 0, EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;
eq_c[5] := GEN_P = piecewise( GEN_T = 0, 0, GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#GB
FiveSpeedGearbox_R := proc(ig)
local i ,eq;
i[1]:=3.32;
i[2]:=2;
i[3]:=1.36;
i[4]:=1.01;
i[5]:=0.82;
eq:= piecewise(ig=1,i[1],ig=2, i[2],ig=3,i[3],ig=4,i[4],ig=5,i[5],1);
return eq(ig);
end proc;


eq_c[7] := GBb_T = -1/GB_R * GBa_T;
eq_c[8] := GBb_W = GB_R * GBa_W;
eq_c[9] := GB_R = FiveSpeedGearbox_R(ig);

 

#System Equations
sys_eqs := convert(eq1,set) union convert(eq_c,set);

 

 #Solve for variables
symvarnames:=select(type,indets(convert(sys_eqs,list)),name);
drivers:= {ig, ICE_T,ICE_W,FD_T,FD_W};
not_drivers := symvarnames minus drivers;

#Assumptinons

assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

sol:=(solve(sys_eqs,not_drivers) assuming real);

symb_sol:=unapply(sol,convert(drivers,list)): ---> Error, (in unapply) variables must be unique and of type name

Subsequent parts don't work...

count := 0;
for i1 from 1 to 40 do
     for i2 from 1 to 40 do
          for i3 from 1 to 40 do
               for i4 from 1 to 40 do
                    for i5 from 1 to 40 do
                         count := count + 1;
                         solsol2(count) := symb_sol2(i1,i2,i3,i4,5);
                    od;
               od; 
          od;
     od;
od;
count;

While running the last line sol:, 1 of 2 things will happen, depending on the solver. Maple17 will take a long time (30+ minutes) to solve, then report nothing, or sol will solve, but will report "some solutions have been lost".

Afterwards, evaluating symb_sol(0,0,0,0,0) will return a viable solution (real values for each of the variables).  Whereas evaluating symb_sol(0,X,0,0,0), where X <> 0, will return and empty list [].

Does anyone know how to (i) speed up the symbolic solve time?  (ii) Return ALL of the solutions?

 

Thanks in advance for reading this.  I've really no idea why this isn't working.  I've also attached two worksheets with the code: noGB.mw   withGB.mw

 Adam

1 2 3 4 5 6 7 Last Page 1 of 29