Items tagged with solve

Feed

I found this error extremely confusing when using the solve function:

 

Error, (in Engine:-Dispatch) cannot determine if this expression is true or false: 1000 < 5^(1/2)
 

Hi, i encountered this, error, and the link to the help page was broken.

Error, (in RootOf) expression independent of _S000100
 

Trying to solve:

solve (arctan((2*x^2-1)/(2*x^2+1)) = 0, x);

The answer I get is the original function:

 
            arctan((2*x^2-1)/(2*x^2+1))

 

This example is from the Maple book by Keck, and he shows the Maple V answer as

1/2 sqrt(2) -1/2 sqrt(2)     

Suggestions?

I want to find the first positive solution of the system of trigonometric equations inside the loop.

The solutions are in the form of "d=number*_Z +number" but I need one exact solution to use it for next run of the loop.
 

restart;
L[0]:=0:
for i from 1 by 1 to 3 do
assume(0<d[i], d[i]<1):
assume(-0.01<a[i], a[i]<0):
L[i]:= L[i-1]+ d[i]:
sys[i]:={Re((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = -0.4, Im((-80*Pi*I*a[i]/((a[i]+1)^3))*exp(4*Pi*I*L[i])) = 0.8}:
solve(sys[i], {a[i],d[i]}, useassumptions = true,AllSolutions=true):
end do;
 

These are the solutions:

d[1] = 0.03689590440 + 0.5000000000 _Z1

d[2] = -1.000000000 d[1] + 0.03689590440 + 0.5000000000 _Z2

d[3] = -1.000000000 d[1] - 1.000000000 d[2] + 0.03689590440 + 0.5000000000 _Z3

 

Hey friends

I want to solve this relation with respect to "M"analytically but maple answer me: "Warning, solutions may have been lost"

How I can solve this problem and get to an analytical solution. It must be noted -1<w<-1/3. we can fix "w" with any value inn this interval. It be accepted any solution for any fixed "w".

Thank you

Analytically_solution.mw

Hi,

I want to solve this equation with respect to M, But Maple answer me: "solution may have been lost"

 

How I can solve this equation?

Thanks guyz

Solutionmayhavebeenlost.mw

Greetings Sirs,

I have recently aquired Maple for some mathematics, and being a new user, I basically google for everything at the moment.

While it has gone well so far, I seem to have hit a bump that I cannot figure out.

I have a function: f(x)=3.2+0.4sin(1.25x), 0<x<5

Trying to find the places where "f(x)=3.5" would normally be done with the equation "3.5=3.2+0.4sin(1.25x)", and when I solve for the equation in Maple I get a solution too.

Problem is though, I know there is supposed to be multiple solutions. Having used wolframalpha, and being capable of seeing the plot in Maple, I know there is two points within the period "x=0..5" that is the solution.

But when I try to solve the equation, I get only one solution per solve, and the second solve doesn't make much sense for me. These are what I use:

As you can see, in the first solve the entire function is being taking into consideration, yet I only get one solution... In the second solve I have tried specifying a period, but I still only get one solution.

Basically any help here is appreciated, because from what I understand, having read google, the solve command or fsolve command is supposed to give multiple results if they are there.

With appreciation,
Ciesi

(Edit: Image size changed)

I want to solve this equation with assumptions!!!

restart;
assume(d::real, d>0):
assume(a::real, -0.01 < a, a < 0):
sys:={-800*Pi*a*cos(6.557377048*Pi*(3.470797713+d))/(a+1)^3 = -.9396060697, 800*Pi*a*sin(6.557377048*Pi*(3.470797713+d))/(a+1)^3 = -.3238482794};
solve(sys, {a,d},useassumptions=true, AllSolutions=true);

one of the solutions has true "a" but "d" is wrong, I want one true solution!

I have the following equality:(N*(P-p[th])/K+p[th])/(2+2*N*Gamma/K+(1+N*Gamma/K)^2/(N*(P-p[th])/K+p[th])) = p[th]/(2+1/p[th]).

How can I get the solution step by step? I have read the forums around and tried few of the tutors, but most of them are either for single variable or I have to specify values for the variables.

can Maple solve bessel function by itself?

Or it seems i need to work out the solving process on myown?

my function is just like this, a simple one

please let me know if yo have any idea about it.

best regards

memdream

 

v=u+at                      (1)
s=u*t+1/2*a*t^2        (2)

below 3 equations, can substitute  (1)  into it to form (2)
s=1/2*(u+v)*t       (3)
v^2=u^2+2*a*s    (4)
s=v*t-1/2*a*t^2    (5)

can these 5 equations be considered as a solution set of solve function?

or

is only first 2 equations be a solution set?

if so, number of equations less than 5 variables, is there something missing?
 

I am trying to solve system consisting of two equations and two unknowns. I tried solve but it gives back unevaluated then I tried fsolve which gives an error.
 

restart; x := 2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi); y := 2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.6645139802*sin(phi)^11*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi); evalf(solve({x = 0, y = 0}, {phi, `&epsilon;`})); fsolve({x = 0, y = 0}, {phi, `&epsilon;`})

.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

.9885168554*`&epsilon;`^8*sin(phi)^9*cos(phi)+0.1249753779e-2*`&epsilon;`^12*sin(phi)^3*cos(phi)+3.258184644*`&epsilon;`^6*sin(phi)^9*cos(phi)+.1124269022*`&epsilon;`^10*sin(phi)^7*cos(phi)+0.4588193106e-1*`&epsilon;`^10*sin(phi)^5*cos(phi)+.2565381358*`&epsilon;`^4*sin(phi)*cos(phi)+6.282275004*`&epsilon;`^4*sin(phi)^11*cos(phi)+0.4933078791e-5*`&epsilon;`^16*sin(phi)^3*cos(phi)+5.282506255*`&epsilon;`^2*sin(phi)^9*cos(phi)+2.242139502*`&epsilon;`^6*sin(phi)^7*cos(phi)+6.170463035*`&epsilon;`^4*sin(phi)^9*cos(phi)+0.8234222560e-1*`&epsilon;`^8*sin(phi)^3*cos(phi)+0.9608710101e-4*`&epsilon;`^14*sin(phi)^3*cos(phi)+3.656113028*`&epsilon;`^6*sin(phi)^11*cos(phi)+5.222697446*`&epsilon;`^4*sin(phi)^13*cos(phi)+0.1562649478e-2*`&epsilon;`^10*sin(phi)*cos(phi)+.6194422970*`&epsilon;`^8*sin(phi)^7*cos(phi)+3.520102051*`&epsilon;`^2*sin(phi)^13*cos(phi)+0.1186386550e-1*`&epsilon;`^10*sin(phi)^3*cos(phi)+4.689119196*`&epsilon;`^2*sin(phi)^11*cos(phi)+1.375810863*`&epsilon;`^2*sin(phi)^3*cos(phi)+0.4740690151e-6*`&epsilon;`^16*sin(phi)*cos(phi)+0.4077214292e-3*`&epsilon;`^14*sin(phi)^5*cos(phi)+0.9582543506e-5*`&epsilon;`^14*sin(phi)*cos(phi)+0.5349926002e-2*`&epsilon;`^12*sin(phi)^5*cos(phi)+.1742483217*`&epsilon;`^10*sin(phi)^9*cos(phi)+1.148250169*`&epsilon;`^6*sin(phi)^5*cos(phi)+0.1277730241e-1*`&epsilon;`^12*sin(phi)^7*cos(phi)+0.7437311918e-1*`&epsilon;`^6*sin(phi)*cos(phi)+1.080128320*`&epsilon;`^8*sin(phi)^11*cos(phi)+2.975771526*`&epsilon;`^6*sin(phi)^13*cos(phi)+1.134364300*`&epsilon;`^2*sin(phi)^17*cos(phi)+3.293959886*`&epsilon;`^4*sin(phi)^15*cos(phi)+1.168884099*`&epsilon;`^4*sin(phi)^3*cos(phi)+3.270035435*`&epsilon;`^2*sin(phi)^5*cos(phi)+0.1283200926e-1*`&epsilon;`^8*sin(phi)*cos(phi)+4.820745909*`&epsilon;`^2*sin(phi)^7*cos(phi)+.3981616844*`&epsilon;`^6*sin(phi)^3*cos(phi)+2.891022275*`&epsilon;`^4*sin(phi)^5*cos(phi)+0.1414814731e-3*`&epsilon;`^12*sin(phi)*cos(phi)+.2212715683*`&epsilon;`^2*sin(phi)*cos(phi)+2.252753163*`&epsilon;`^2*sin(phi)^15*cos(phi)+4.857729947*`&epsilon;`^4*sin(phi)^7*cos(phi)+.2775645236*`&epsilon;`^8*sin(phi)^5*cos(phi)+0.1560418629e-7*`&epsilon;`^18*sin(phi)*cos(phi)-.6257226193*sin(phi)*cos(phi)+.8667852062*sin(phi)^9*cos(phi)+0.5208654259e-1*sin(phi)^19*cos(phi)+.1265580305*sin(phi)^17*cos(phi)+.2494189998*sin(phi)^15*cos(phi)+.4337136311*sin(phi)^13*cos(phi)-.1331733921*sin(phi)^3*cos(phi)+.5467360220*sin(phi)^5*cos(phi)+.8861408610*sin(phi)^7*cos(phi)+.6645139802*sin(phi)^11*cos(phi)

 

{phi = 0., `&epsilon;` = `&epsilon;`}, {phi = 1.570796327, `&epsilon;` = `&epsilon;`}, {phi = phi, `&epsilon;` = RootOf(1560418629*_Z^18+(47406901510+493307879100*sin(phi)^2)*_Z^16+(40772142920000*sin(phi)^4+9608710101000*sin(phi)^2+958254350600)*_Z^14+(14148147310000+124975377900000*sin(phi)^2+534992600200000*sin(phi)^4+1277730241000000*sin(phi)^6)*_Z^12+(11242690220000000*sin(phi)^6+1186386550000000*sin(phi)^2+17424832170000000*sin(phi)^8+156264947800000+4588193106000000*sin(phi)^4)*_Z^10+(8234222560000000*sin(phi)^2+61944229700000000*sin(phi)^6+98851685540000000*sin(phi)^8+108012832000000000*sin(phi)^10+27756452360000000*sin(phi)^4+1283200926000000)*_Z^8+(7437311918000000+114825016900000000*sin(phi)^4+297577152600000000*sin(phi)^12+325818464400000000*sin(phi)^8+365611302800000000*sin(phi)^10+224213950200000000*sin(phi)^6+39816168440000000*sin(phi)^2)*_Z^6+(485772994700000000*sin(phi)^6+628227500400000000*sin(phi)^10+522269744600000000*sin(phi)^12+329395988600000000*sin(phi)^14+25653813580000000+617046303500000000*sin(phi)^8+116888409900000000*sin(phi)^2+289102227500000000*sin(phi)^4)*_Z^4+(22127156830000000+137581086300000000*sin(phi)^2+468911919600000000*sin(phi)^10+352010205100000000*sin(phi)^12+225275316300000000*sin(phi)^14+528250625500000000*sin(phi)^8+327003543500000000*sin(phi)^4+113436430000000000*sin(phi)^16+482074590900000000*sin(phi)^6)*_Z^2-62572261930000000-13317339210000000*sin(phi)^2+12655803050000000*sin(phi)^16+54673602200000000*sin(phi)^4+86678520620000000*sin(phi)^8+43371363110000000*sin(phi)^12+66451398020000000*sin(phi)^10+88614086100000000*sin(phi)^6+24941899980000000*sin(phi)^14+5208654259000000*sin(phi)^18)}

 

Error, (in fsolve) number of equations, 1, does not match number of variables, 2

 

``


 

Download equations_solve.mw

how can i solve this inequality in maple ? i want to solve y in terms of x and then plot y,x
could anyone help? tnx in advance

 


 

restart:

with(SolveTools[Inequality]):

eq:=1/(x*y^(2/3))*8.620689655172415*10^(-16)*(-3.11*10^23*x^2*y^(7/6)-3.92*10^19*y^(25/6)+2.14545039999999*10^29*(0.0108*exp(-45.07/y)+exp(-19.98/y^(1/3)-0.00935317203476387*y^2)))/(x+0.015*y^(1.2));

0.8620689655e-15*(-0.3110000000e24*x^2*y^(7/6)-0.3920000000e20*y^(25/6)+0.2317086432e28*exp(-45.07/y)+0.2145450400e30*exp(-19.98/y^(1/3)-0.935317203476387e-2*y^2))/(x*y^(2/3)*(x+0.15e-1*y^1.2))

(1)

solve({eq>0},y);

Warning, solutions may have been lost

 

 


 

Download solveee.mw

solve(diff(-1/x,x) = (-1/x)^(b), b);

originally is 2, but it use ln(....) to express
 
if start from substitute, it seems need to replace manually.

solve(subs(a(x)=-1/x,diff(a(x),x) = (a(x))^(b)), b);

 
goal is to find b in equation below
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)^(b), b);
(2*x+1)/(-1+x)^2-(2*(x^2+x+1))/(-1+x)^3 = ((x^2+x+1)/(-1+x)^2)^(b)
 
solve(diff((x^2+x+1)/(-1+x)^2,x) = ((x^2+x+1)/(-1+x)^2)*(b), b);

So, i have 3 vectors:

A=2i-3j+ak

B=bi+j-4k

C=3i+cj+2k

where a,b,c are constants.

such that A is perpedicular on B and C, and the scalar product B*C=2.I have to estimate this constants using an iterative algorithm on Maple and then solve the problem using predefined function from Maple and compare the results.If you have an idea pls let me know.Thank you.Sry if I wasn't clear.

1 2 3 4 5 6 7 Last Page 1 of 48