Items tagged with student student Tagged Items Feed

I have created a model for a robot in Solidworks and have imported it into Maplesim using the CAD toolbox. The problem I have is that the robot has 3 arms that are supposed to come together on a central piece pictured below in figure 1, but attempting to simulate the model with all arms connected with a revolute joint as in figure 2 yields an error that says "The system is underdetermined" the location of the error is main.

For the purposes of the image below I only connected one of the arms, this allows Maplesim to run the file successfully.

figure 1 showing the central piece that the 3 arms are supposed to connect to.

 

Figure 2 showing the problem revolute joints circled in black, the error at the bottom and the setting of the revolute joint on the right.

 

Essentially my question is how do I get the model to work? I apologise if this problem is not terribly well demonstrated, this is my first post onto this forum so I am not sure of all the standards.

I am having 26th degree polynomial univariate equation , I used Isolate to get the roots. but I am getting some extra roots which are not true they I even tried to substitute those roots in original equation then I got non zero answer instead of getting nearly zero answer.How is it possible??

 

equation looks like:

-12116320194738194778134937600000000*t^26+167589596741213731838990745600000000*t^24+1058345691529498270472972795904000000*t^22-4276605572538658673086219419648000000*t^20-23240154739806540070988490473472000000*t^18-5442849111209103187871341215744000000*t^16+49009931453396028716875310432256000000*t^14+74247033158233643322704589225984000000*t^12-2762178990802317464801412907008000000*t^10-25947900993773120244883450232832000000*t^8-7468990043547273070742668836864000000*t^6-567730116675454293925108383744000000*t^4+3703566799705707258760396800000000*t^2-4742330812072533924249600000000

Solutions i got:

[t = -4.162501845, t = -2.295186769, t = -1.300314688, t = -.8048430445, t = -0.6596008501e-1, t = -0.4212510777e-1, t = 0.4212510777e-1, t = 0.6596008501e-1, t = .8048430445, t = 1.300314688, t = 2.295186769, t = 4.162501845]

t=4.162501845 give me non zero answer when I substitute it in the equation given above:

I got this answer: 4.750212083*10^39

 

Dear all

I have a simple question about geometric series

What's the difference between g(2) and gg(2)

 Many thanks

 

 

Geometric_series.mw

 

I'm currently working on building a Grid Layout for a project, and I'm having trouble coding in the RunWindow and GetFile elements into buttons under the grid layout. I've gone through the overviews and examples for them, but had no luck. I'm using Maple 2016.1 for OS X.

Additionally, the structure of the code is slightly different as to how many of the example worksheets structure their Grid Layout code, since the code originated from a Maplet Builder file. I.e. in the example worksheets they would follow as:

maplet := Maplet('onstartup' = 'Action1', 'reference' = 'Maplet1',
         BoxLayout('background' = "#D6D3CE", 'border' = 'false', 'halign' = 'center', 'inset' = '5', 'reference' = 'BoxLayout1', 'valign' = 'center', 'vertical' = 'false', 'visible' = 'true',
                       BoxColumn( BoxCell('hscroll' = 'never', 'value' = 'Button1', 'vscroll' = 'never'),
         GridLayout('background' = "#D6D3CE", 'border' = 'false','halign'='center','inset'='5', 'reference' = 'GridLayout1', 'valign' = 'center', 'visible' = 'true',
                   GridRow('valign' = 'top', GridCell('height' = '1', 'hscroll' = 'never', 'value' = 'BoxLayout1', 'vscroll' = 'never', 'width' = '1' ))),
         Window('layout'= 'GridLayout1', 'reference' = 'W1', 'resizable' = 'true', 'title' = "Maplet"),
          Action('reference' = 'Action1', RunWindow('window'= 'W1'))

However the structure for the code I am working with has action at the very start of the code, follwed by the the code for the buttons then layouts/window.  E.g. (the code has been shortened)

with (Maplets[Elements]):
maplet :=
Maplet('onstartup'='Action1','reference'='Maplet1',
Action('reference'='clickButton1'),
Action('reference'='clickButton9',
Evaluate('function'='plot3d(x^2*cos(y),x = -1 .. 1,y = -2*Pi .. 2*Pi)','target'='Plotter1','waitforresult'='true')),
Action('reference'='clickButton11'),
Action('reference'='clickButton12'),
Action('reference'='clickButton10'),
Button('background'="#D6D3CE",'caption'="Insert Molecular Geometry",'enabled'='true','foreground'="#000000",'onclick'='clickButton1','reference'='Button1','visible'='true'),

....

BoxLayout('background'="#D6D3CE",'border'='false','halign'='center','inset'='5','reference'='BoxLayout1','valign'='center','vertical'='false','visible'='true',
BoxColumn(
BoxCell('hscroll'='never','value'='Button1','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout2','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout3','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout9','vscroll'='never'),
BoxCell('hscroll'='never','value'='BoxLayout14','vscroll'='never')),
BoxColumn(
BoxCell('hscroll'='never','value'='Label3','vscroll'='never'),
BoxCell('hscroll'='never','value'='Plotter1','vscroll'='never'),
BoxCell('hscroll'='never','value'='Slider1','vscroll'='never'))),
GridLayout('background'="#D6D3CE",'border'='false','halign'='center','inset'='5','reference'='GridLayout1','valign'='center','visible'='true',
GridRow('valign'='top',
GridCell('height'='1','hscroll'='never','value'='BoxLayout1','vscroll'='never','width'='1'))),
Window('layout'='GridLayout1','reference'='Window1','resizable'='true','title'="Maplet"),
Action('reference'='Action1',
RunWindow('window'='Window1'))):

Maplets[Display](maplet);

 

If anyone would be able to provide an example of code or some guidance I could follow that would be greatly appreciated! 

Hi,

I did some hypothesis testing exercises and I cross checked the result with Maple. I just used following vectors for an unpaired test

a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];

I ended up with the following solution:

HFloat(1.5225682336585966)
HFloat(-3.122568233658591)
for a 0.95 confidence interval.

 

Using

TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed)

and

TwoSampleTTest(a, b, 0, confidence = .975, summarize = embed)

I get following results:

-2.75177 .. 1.15177

-3.13633 .. 1.53633

respectively. I can not explain the discrepancy.

 

Best regards,

Oliver

 

PS:

Maple Code in case files won´t be attached.

 

 

Unpaired t Test
restart;
Unpaired test-test dataset
a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];
The se² estimate is given by:
se²=var(a)+var(b)+2*cov(a*b)=var(a)+var(b)
se²=
sigma[a]^2/Na+sigma[b]^2/Nb;
with Na, Nb being the length of vector a and b respectively.
                             2                              2
  sigma[[88, 89, 92, 90, 90]]    sigma[[92, 90, 91, 89, 91]]
  ---------------------------- + ----------------------------
               Na                             Nb             
sigma[a]^2;
 and
sigma[b]^2;
 are approximated by
S[a]^2;
 and
S[b]^2;
                                             2
                  sigma[[88, 89, 92, 90, 90]]
                                             2
                  sigma[[92, 90, 91, 89, 91]]
                                           2
                    S[[88, 89, 92, 90, 90]]
                                           2
                    S[[92, 90, 91, 89, 91]]
with
S[X]^2;
 defined as
S[X]*`²` = (sum(X[i]-(sum(X[j], j = 1 .. N))/N, i = 1 .. N))^2/N;
                                 2
                             S[X]
                                                 2
                      /      /         N       \\
                      |      |       -----     ||
                      |  N   |        \        ||
                      |----- |         )       ||
                      | \    |        /    X[j]||
                      |  )   |       -----     ||
                      | /    |       j = 1     ||
                      |----- |X[i] - ----------||
                      \i = 1 \           N     //
             S[X] ᅡᄇ = ----------------------------
                                   N              
with(Statistics);
Sa := Variance(a);
                   HFloat(2.1999999999999993)
Sb := Variance(b);
                   HFloat(1.3000000000000003)
Now we are ready to do hypothesis testing (0.95).
We have (with k=min(Na,Nb)=5):
C = mean(a)-mean(b); Deviation := t_(alpha/a, k-1)*se(Sa/k-Sb/k);
c := Mean(a)-Mean(b); deviation := 2.776*sqrt((1/5)*Variance(a)+(1/5)*Variance(b));
                  HFloat(-0.7999999999999972)
                   HFloat(2.3225682336585938)
upperlimit := c+deviation; lowerlimit := c-deviation;
                   HFloat(1.5225682336585966)
                   HFloat(-3.122568233658591)

Execution of built in student test
TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed);

 

 

Hello,

 

I tried to plot the problem presented below:

restart; with(plots); C := setcolors(); with(LinearAlgebra);

formula1 := 2.6*BodyWeight*abs(sin(4*Pi*t));
2.6 BodyWeight |sin(4 Pi t)|
BodyWeight := 80*9.81;
plot(formula1, t = 0 .. 2);


eq2 := formula1-SpringConstant*y(t)-DampConstant*(diff(y(t), t)) = Mass*(diff(y(t), `$`(t, 2)));
2040.480 |sin(4 Pi t)| - SpringConstant y(t)

/ d \ / d / d \\
- DampConstant |--- y(t)| = Mass |--- |--- y(t)||
\ dt / \ dt \ dt //
DampConstant := 50;
50
Mass := .200;
Springt := 200;
200
SpringConstant := Youngsmodulus*Surface/DeltaLength;
DeltaLength := 0.2e-1-y(t);
Surface := .15;
Youngsmodulus := 6.5*10^6/(t+1)+6.5*10^6;
plot(Youngsmodulus, t = 0 .. 10000);

eq2;
2040.480 |sin(4 Pi t)|

/ 6 \
|6.5000000 10 6|
0.15 |------------- + 6.5000000 10 | y(t)
\ t + 1 / / d \
- ----------------------------------------- - 50 |--- y(t)| =
0.02 - y(t) \ dt /

/ d / d \\
0.200 |--- |--- y(t)||
\ dt \ dt //

incs := y(0) = 0, (D(y))(0) = 0;
eq4 := dsolve({eq2, incs}, y(t), type = numeric, method = lsode[backfull], maxfun = 0);
proc(x_lsode) ... end;

plots:-odeplot(eq4, [t, y(t)], 0 .. 5);

 When I try to plot it beyond t=5, Maple gives the following error:

Warning, could not obtain numerical solution at all points, plot may be incomplete

Does anyone know how to plot it even further?

 

 

Hi everyone,

I'm kinda new here, and I really hope you guys can help me through this. In my new case study, after some revision, i thought i might be trying to implement a shooting method. I tried my best to make it work/understand but i couldn't get to any result.

So, as attached (i re-do PV Satya Naraya's paper first to be more understand but .....)

 

Here is my questions and the worksheet:

1) really stuck in mind - what is the purpose of shooting method for some related study?

2) what is the meaning of error .............'use midpoint method intead" 

3) Worksheet - 1MASS_JEFF_SATYA_on_Beta.mw

Thanks in advanced. Really hope that someone can help/teach me how to solve the boundary value problem by shooting method. 

 

 

restart; with(plots); lambda := 1.0; m := 2.0; M := 2; R := .1; Pr := .75; G := .1; Sc := .6; Kr := .2; blt := 5

Eq1 := diff(f(eta), eta, eta, eta)+(1+lambda)*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2)-(1+lambda)*M*(diff(f(eta), eta))+beta*((diff(f(eta), eta, eta))^2-f(eta)*(diff(f(eta), eta, eta, eta, eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+2.0*f(eta)*(diff(diff(f(eta), eta), eta))-2.0*(diff(f(eta), eta))^2-4.0*(diff(f(eta), eta))+beta*((diff(diff(f(eta), eta), eta))^2-f(eta)*(diff(diff(diff(diff(f(eta), eta), eta), eta), eta))) = 0

(1)

``

Eq2 := (1+(4/3)*R)*(diff(theta(eta), eta, eta))+Pr*(f(eta)*(diff(theta(eta), eta))-m*(diff(f(eta), eta))*theta(eta)+G*theta(eta)) = 0;
NULL``

1.133333333*(diff(diff(theta(eta), eta), eta))+.75*f(eta)*(diff(theta(eta), eta))-1.500*(diff(f(eta), eta))*theta(eta)+0.75e-1*theta(eta) = 0

(2)

Eq3 := diff(phi(eta), eta, eta)+Sc*(f(eta)*(diff(phi(eta), eta))-m*(diff(f(eta), eta))*phi(eta)-Kr*phi(eta)) = 0;

diff(diff(phi(eta), eta), eta)+.6*f(eta)*(diff(phi(eta), eta))-1.20*(diff(f(eta), eta))*phi(eta)-.12*phi(eta) = 0

(3)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, (D(D(f)))(blt) = 0, theta(0) = 1, theta(blt) = 0, phi(0) = 1, phi(blt) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(5) = 0, ((D@@2)(f))(5) = 0, theta(0) = 1, theta(5) = 0, phi(0) = 1, phi(5) = 0

(4)

L := [1.0, 1.5, 2.0, 2.5];

[1.0, 1.5, 2.0, 2.5]

(5)

for k to 4 do R := dsolve(eval({Eq1, Eq2, Eq3, bcs1}, beta = L[k]), [f(eta), theta(eta), phi(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YA || k := rhs(R[6]); YB || k := rhs(R[5]); YC || k := -rhs(R[8]) end do

Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead

 

R

 

``

 

NULL

 

Download 1MASS_JEFF_SATYA_on_Beta.mw

Hi, i am trying to solve my PDEs with HPM method ,but i get strange errors.

first one is :Error, (in trig/reduce/reduce) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc,

but when i run my last function again,the error chages,let me show you.


restart;
lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;
                              0.5
                              0.5
                              0.5
                              0.1
                              0.1
                               10
> EQUATIONS;


equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;
/  d   /  d   /  d   /  d         \\\\     //  d         \ /  d  
|----- |----- |----- |----- f(eta)|||| - R ||----- f(eta)| |-----
\ deta \ deta \ deta \ deta       ////     \\ deta       / \ deta

   /  d         \\          /  d   /  d         \\\
   |----- f(eta)|| - f(eta) |----- |----- f(eta)|||
   \ deta       //          \ deta \ deta       ///

         /  d         \    
   - 1.0 |----- g(eta)| = 0
         \ deta       /    
     /  d   /  d         \\
     |----- |----- g(eta)||
     \ deta \ deta       //

            //  d         \                 /  d         \\
        - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
            \\ deta       /                 \ deta       //

              /  d         \    
        + 1.0 |----- f(eta)| = 0
              \ deta       /    
  /  d   /  d             \\               /  d             \
  |----- |----- theta(eta)|| + 10 R f(eta) |----- theta(eta)|
  \ deta \ deta           //               \ deta           /

           /  d           \ /  d             \
     + 0.1 |----- phi(eta)| |----- theta(eta)|
           \ deta         / \ deta           /

                             2    
           /  d             \     
     + 0.1 |----- theta(eta)|  = 0
           \ deta           /     
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
> BOUNDARY*CONDITIONS;


ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;
   f(0) = 0, D(f)(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1
  f(1) = 0.5, D(f)(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0
> HPMs;


hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

        //  d   /  d   /  d   /  d         \\\\
(1 - p) ||----- |----- |----- |----- f(eta)||||
        \\ deta \ deta \ deta \ deta       ////

         /  d         \\     //  d   /  d   /  d   /  d         \
   - 1.0 |----- g(eta)|| + p ||----- |----- |----- |----- f(eta)|
         \ deta       //     \\ deta \ deta \ deta \ deta       /

  \\\     //  d         \ /  d   /  d         \\
  ||| - R ||----- f(eta)| |----- |----- f(eta)||
  ///     \\ deta       / \ deta \ deta       //

            /  d   /  d         \\\       /  d         \\    
   - f(eta) |----- |----- f(eta)||| - 1.0 |----- g(eta)|| = 0
            \ deta \ deta       ///       \ deta       //    
        //  d   /  d         \\       /  d         \\     //  d  
(1 - p) ||----- |----- g(eta)|| + 1.0 |----- f(eta)|| + p ||-----
        \\ deta \ deta       //       \ deta       //     \\ deta

   /  d         \\
   |----- g(eta)||
   \ deta       //

       //  d         \                 /  d         \\
   - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
       \\ deta       /                 \ deta       //

         /  d         \\    
   + 1.0 |----- f(eta)|| = 0
         \ deta       //    
                                       /                         
        /  d   /  d             \\     |/  d   /  d             \
(1 - p) |----- |----- theta(eta)|| + p ||----- |----- theta(eta)|
        \ deta \ deta           //     \\ deta \ deta           /

  \               /  d             \
  | + 10 R f(eta) |----- theta(eta)|
  /               \ deta           /

         /  d           \ /  d             \
   + 0.1 |----- phi(eta)| |----- theta(eta)|
         \ deta         / \ deta           /

                           2\    
         /  d             \ |    
   + 0.1 |----- theta(eta)| | = 0
         \ deta           / /    
        //  d   /  d           \\
(1 - p) ||----- |----- phi(eta)||
        \\ deta \ deta         //

                 /  d   /  d             \\\     //  d   /  d   
   + 1.000000000 |----- |----- theta(eta)||| + p ||----- |-----
                 \ deta \ deta           ///     \\ deta \ deta

          \\                /  d           \
  phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
          //                \ deta         /

                 /  d   /  d             \\\    
   + 1.000000000 |----- |----- theta(eta)||| = 0
                 \ deta \ deta           ///    
f(eta)=sum(f[i](eta)*p^i,i=0..1);
                f(eta) = f[0](eta) + f[1](eta) p
g(eta)=sum(g[i](eta)*p^i,i=0..1);
                g(eta) = g[0](eta) + g[1](eta) p
theta(eta)=sum(theta[i](eta)*p^i,i=0..1);
          theta(eta) = theta[0](eta) + theta[1](eta) p
phi(eta)=sum(phi[i](eta)*p^i,i=0..1);
             phi(eta) = phi[0](eta) + phi[1](eta) p
> FORequ1;


A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);
/      /  d            \ /  d   /  d            \\
|-1. R |----- f[1](eta)| |----- |----- f[1](eta)||
\      \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  3   /
   + R f[1](eta) |----- |----- f[1](eta)||| p  + |
                 \ deta \ deta          ///      \
      /  d            \ /  d   /  d            \\
-1. R |----- f[0](eta)| |----- |----- f[1](eta)||
      \ deta          / \ deta \ deta          //

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[1](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\
   + R f[0](eta) |----- |----- f[1](eta)||
                 \ deta \ deta          //

                 /  d   /  d            \\\  2   //  d   /  d   /
   + R f[1](eta) |----- |----- f[0](eta)||| p  + ||----- |----- |
                 \ deta \ deta          ///      \\ deta \ deta \

    d   /  d            \\\\       /  d            \
  ----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
   deta \ deta          ////       \ deta          /

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[0](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  
   + R f[0](eta) |----- |----- f[0](eta)||| p
                 \ deta \ deta          ///  

     /  d   /  d   /  d   /  d            \\\\
   + |----- |----- |----- |----- f[0](eta)||||
     \ deta \ deta \ deta \ deta          ////

         /  d            \    
   - 1.0 |----- g[0](eta)| = 0
         \ deta          /    
A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;
/  d   /  d   /  d   /  d            \\\\       /  d            \   
|----- |----- |----- |----- f[0](eta)|||| - 1.0 |----- g[0](eta)| =
\ deta \ deta \ deta \ deta          ////       \ deta          /   

  0
/  d   /  d   /  d   /  d            \\\\       /  d            \
|----- |----- |----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
\ deta \ deta \ deta \ deta          ////       \ deta          /

       /  d            \ /  d   /  d            \\
   - R |----- f[0](eta)| |----- |----- f[0](eta)||
       \ deta          / \ deta \ deta          //

                 /  d   /  d            \\    
   + R f[0](eta) |----- |----- f[0](eta)|| = 0
                 \ deta \ deta          //    
icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
>
FORequ2;


B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);
/      /  d            \          
|-1. R |----- f[1](eta)| g[1](eta)
\      \ deta          /          

                 /  d            \\  3   /
   + R f[1](eta) |----- g[1](eta)|| p  + |
                 \ deta          //      \
      /  d            \          
-1. R |----- f[0](eta)| g[1](eta)
      \ deta          /          

          /  d            \          
   - 1. R |----- f[1](eta)| g[0](eta)
          \ deta          /          

                 /  d            \
   + R f[0](eta) |----- g[1](eta)|
                 \ deta          /

                 /  d            \\  2   //  d   /  d            
   + R f[1](eta) |----- g[0](eta)|| p  + ||----- |----- g[1](eta)
                 \ deta          //      \\ deta \ deta          

  \\       /  d            \        /  d            \          
  || + 1.0 |----- f[1](eta)| - 1. R |----- f[0](eta)| g[0](eta)
  //       \ deta          /        \ deta          /          

                 /  d            \\     /  d   /  d            \\
   + R f[0](eta) |----- g[0](eta)|| p + |----- |----- g[0](eta)||
                 \ deta          //     \ deta \ deta          //

         /  d            \    
   + 1.0 |----- f[0](eta)| = 0
         \ deta          /    
B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;
     /  d   /  d            \\       /  d            \    
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0
     \ deta \ deta          //       \ deta          /    
       /  d   /  d            \\       /  d            \
       |----- |----- g[1](eta)|| + 1.0 |----- f[1](eta)|
       \ deta \ deta          //       \ deta          /

              /  d            \          
          - R |----- f[0](eta)| g[0](eta)
              \ deta          /          

                        /  d            \    
          + R f[0](eta) |----- g[0](eta)| = 0
                        \ deta          /    
icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
> FORequ3;


C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);
 /                                     
 |                /  d                \
 |10. R f[1](eta) |----- theta[1](eta)|
 \                \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

                               2\                              
          /  d                \ |  3   /                /  d   
    + 0.1 |----- theta[1](eta)| | p  + |10. R f[0](eta) |-----
          \ deta              / /      \                \ deta

                \                   /  d                \
   theta[1](eta)| + 10. R f[1](eta) |----- theta[0](eta)|
                /                   \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                                                            /
          /  d                \ /  d                \\  2   |/
    + 0.2 |----- theta[0](eta)| |----- theta[1](eta)|| p  + ||
          \ deta              / \ deta              //      \\

     d   /  d                \\
   ----- |----- theta[1](eta)||
    deta \ deta              //

                      /  d                \
    + 10. R f[0](eta) |----- theta[0](eta)|
                      \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                               2\  
          /  d                \ |  
    + 0.1 |----- theta[0](eta)| | p
          \ deta              / /  

      /  d   /  d                \\    
    + |----- |----- theta[0](eta)|| = 0
      \ deta \ deta              //    
C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;
                  d   /  d                \    
                ----- |----- theta[0](eta)| = 0
                 deta \ deta              /    
       /  d   /  d                \\
       |----- |----- theta[1](eta)||
       \ deta \ deta              //

                           /  d                \
          + 10 R f[0](eta) |----- theta[0](eta)|
                           \ deta              /

                /  d              \ /  d                \
          + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
                \ deta            / \ deta              /

                                     2    
                /  d                \     
          + 0.1 |----- theta[0](eta)|  = 0
                \ deta              /     
icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;
                theta[0](0) = 1, theta[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0
> FORequ4;


E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);
                 3 /  d              \   /                /  d   
0.5 R f[1](eta) p  |----- phi[1](eta)| + |0.5 R f[0](eta) |-----
                   \ deta            /   \                \ deta

             \                   /  d              \\  2   //
  phi[1](eta)| + 0.5 R f[1](eta) |----- phi[0](eta)|| p  + ||
             /                   \ deta            //      \\

    d   /  d              \\
  ----- |----- phi[1](eta)||
   deta \ deta            //

                 /  d   /  d                \\
   + 1.000000000 |----- |----- theta[1](eta)||
                 \ deta \ deta              //

                     /  d              \\  
   + 0.5 R f[0](eta) |----- phi[0](eta)|| p
                     \ deta            //  

     /  d   /  d              \\
   + |----- |----- phi[0](eta)||
     \ deta \ deta            //

                 /  d   /  d                \\    
   + 1.000000000 |----- |----- theta[0](eta)|| = 0
                 \ deta \ deta              //    
E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;
       /  d   /  d              \\
       |----- |----- phi[0](eta)||
       \ deta \ deta            //

                        /  d   /  d                \\    
          + 1.000000000 |----- |----- theta[0](eta)|| = 0
                        \ deta \ deta              //    
         /  d   /  d              \\
         |----- |----- phi[1](eta)||
         \ deta \ deta            //

                          /  d   /  d                \\
            + 1.000000000 |----- |----- theta[1](eta)||
                          \ deta \ deta              //

                              /  d              \    
            + 0.5 R f[0](eta) |----- phi[0](eta)| = 0
                              \ deta            /    
icsE1:=theta[0](0)=1,theta[0](1)=0,phi[0](0)=1,phi[0](1)=0;
icsE2:=theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;
 theta[0](0) = 1, theta[0](1) = 0, phi[0](0) = 1, phi[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0
       
theta[0](eta) = -(152675527/100000000)*eta+1;
                                152675527        
              theta[0](eta) = - --------- eta + 1
                                100000000        
U:=f[1](eta)=0;
                         f[1](eta) = 0
Dsolve(A1,B1,icsA1,icsB1);
                  Dsolve(A1, B1, icsA1, icsB1)


sys:={ diff(g[0](eta), eta, eta)+1.0*(diff(f[0](eta), eta)) = 0, diff(f[0](eta), eta, eta, eta, eta)-1.0*(diff(g[0](eta), eta)) = 0};
    //  d   /  d   /  d   /  d            \\\\
   { |----- |----- |----- |----- f[0](eta)||||
    \\ deta \ deta \ deta \ deta          ////

            /  d            \      
      - 1.0 |----- g[0](eta)| = 0,
            \ deta          /      

     /  d   /  d            \\       /  d            \    \
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0 }
     \ deta \ deta          //       \ deta          /    /
IC_1:={ f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0,f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0};
    {f[0](0) = 0, f[0](1) = 0.5, g[0](0) = 0, g[0](1) = 0,

      D(f[0])(0) = 1, D(f[0])(1) = 0}
ans1 := combine(dsolve(sys union IC_1,{f[0](eta),g[0](eta)}),trig);
Error, (in dsolve) expecting an ODE or a set or list of ODEs. Received `union`(IC_1, sys)
>

Hello

I have a subscripts error, or it seems to be an error.

As you can see on the picture, then I have defined the varible I__K, but when I need it again I get another result or It seems to be another result that looks like this I[K]. I use the esc buttom to recall the varible.

Are there anybody that has a solution to this? I have been looking at other treads, but there seems not to be a solution that works or maybe I'm looking the wrong places.

Regards

Heide

 

 

How difficult is it to simulate gravitational influences and perturbing effects on celestial orbits with Maple? Could this syntax http://www.maplesoft.com/applications/view.aspx?SID=4484&view=html be altered without excessive changes to consider these aspects?

Are there somewhere worksheets to take a look at as an introduction and to see how such goals would be approached and implemented?


with(PDEtools, casesplit, declare)
``

L := 1651.12; m := 3205.12; r1 := .1875; r2 := 2; z1 := 0; z2 := 12; ld := 4.5

NULL

declare(u(r, z), w(r, z))``

with(DEtools, gensys)

rr := (L+2*m)*(diff(u(r, z), r))+L*(diff(w(r, z), z))+L*u(r, z)/r

zz := L*(diff(u(r, z), r))+(L+2*m)*(diff(w(r, z), z))+L*u(r, z)/r

rz := m*(diff(u(r, z), z))+m*(diff(w(r, z), r))

BCS := {rr(r1, ld) = 0, rz(r1, z) = T, w(r, 0) = 0, zz(r, z2) = 0}

{3205.12*(diff(u(r, z), z))(.1875, z)+3205.12*(diff(w(r, z), r))(.1875, z) = T, 8061.36*(diff(u(r, z), r))(.1875, 4.5)+1651.12*(diff(w(r, z), z))(.1875, 4.5)+1651.12*(u(r, z))(.1875, 4.5)/r(.1875, 4.5) = 0, 1651.12*(diff(u(r, z), r))(r, 12)+8061.36*(diff(w(r, z), z))(r, 12)+1651.12*(u(r, z))(r, 12)/r(r, 12) = 0, w(r, 0) = 0}

(1)

``

NULL

sys3 := [(L+2*m)*(diff(u(r, z), r, r))+(L+m)*(diff(w(r, z), r, z))+(L+2*m)*(diff(u(r, z), r))/r-(L+2*m)*u(r, z)/r^2+m*(diff(u(r, z), z, z)) = 0, (L+m)*(diff(u(r, z), r, z))+m*(diff(w(r, z), r, r))+(L+2*m)*(diff(w(r, z), z, z))+(L+m)*(diff(u(r, z), z))/r+m*(diff(w(r, z), r))/r = 0]

pdsolve(sys3, BCS, numeric)

 

 

``

``


Download PDE_equation2.mw

Hi all,

I have the following PDE, is it solveable by Maple or not. Do I need a boundary condition and how many or I can get a general solution? I am new to Maple. Any help will be appreciated.

Thank you.

 

 

 

Hi all, 

 

I was wondering if it is possible to add a colour gradient to a point plot to represent another perameter in the data.

 

 

For example, each point corresponds to a value of 'f' ranging from 0.1 to 1, and I was wondering how to display this by means of a colour gradient.

 

 

Thanks,

See attached file and code

0. This is the differential equation I'm trying to do:

http://www.intmath.com/differential-equations/6-rc-circuits.php

https://i.imgur.com/zlVIisR.png

 

1. After you look at the above imgur link, could you help me with this error 

Error, (in Units:-Standard:-+) the units ``Ω`` and `1/F` have incompatible dimensions

  

2. Why does my solve ODE fail? 

 

See my code: 

test_maple.mw

Hello,

 

I'm trying to solve the integral u/(1-u) with Maple and noticed that it returned a result that doesn't accord to the solution I found by hand or the solution from WolframAlpha. This is a screenshot of the weird behaviour:

Does Maple do any weird conversions? Or did I do something wrong or is Maple wrong?

Thanks in advance,

Hi!

In Mathematica 10.0 were introduced regions with functions like TransformedRegion, ReginIntersection, etc. Moreover, it is easy to check if a point is inside a region, etc.

I would like to ask if in Maple I could use some API with similar functionality?. For instance, I would like to get integer points which lay inside an intersection of two cubes. How I could do this in Maple?

 

 

1 2 3 4 5 6 7 Last Page 1 of 139