Items tagged with subs subs Tagged Items Feed

Hello All,

I have 6 equations that are similair in size to the one listed below. I am trying to find a single equation in terms of only 1 of the variables (s11). After finding this equation I want to solve it for that single variable. When I start plugging all these equations into eachother I get to about the last one then maple seems to get stuck evaluating. I left it on overnight thinking that if I gave it time it would eventually solve, but this didn't seem to work. My questions is, If I gave it enough time would it solve this? Is there another way to do this? Any help you guys could offer would be a great help. Thanks!

 

Sample Equation

restart:

Xsubs:=X=x*exp(epsilon*alpha[1]);

Ysubs:=Y=y*exp(epsilon*alpha[2]);

psubs := P = p*exp(epsilon*alpha[3])

where P(X,Y) and p(x,y). epsilon, alpha[i], i=1,2,3 are parameters.

how to changeover from p(x,y) to P(X,Y) in the following equation?

Eq:= diff(p,y$2)+diff(p,x)=0;

Cheers!

 

Sorry for the bad format, maple input is not working.

In particular,from an expression, something like

 Int(x*f(x), x = 0 .. 1)+ Int(x, x = 0 .. 1/3)+3* Int(x*f(x), x = 0 .. 2/3)

I want to extract 

x*f(x)+x+3*x*f(x)

That is all the integrands occuring in the expression. GetIntegrand helps to find the integrand but only for one integral, how do I do it for an expression like above.

 

I tried to apply following approach

subs(sin(c::anything)=c, sin(x)+f);


and the output was

f

I was expecting to get only 'x+f' for output.

EDIT 1: 

Thank you so much for your help. You guys answered exactly what I asked for. I needed this to do something different but I should have been more careful. I realized, I could not get that part now. This is what I actually need to do, if

A:=-(5/8)*x*(Int(f(x), x = 0 .. x))+(5/24)*(Int(f(x), x = 1/3 .. x))-(1/4)*x*(Int(x*f(x), x = 1/3 .. x));

then I wish to get a function, g(xi),


g(xi)= -(5/8)x*f(xi) ;   if 0<= xi <= x
                                                  (5/24)*f(xi)-(1/4)*x*xi*f(xi) ; if 1/3<= xi<= x

Notice, all the terms after integral should use variable 'xi' and terms occurring before integral remains as it is.

I am trying to simplify equation 18 using equations 8 and 9. It should look a little like equation 21, but instead I get the results in equations 19 and 20.  I tried using different substituions, but algsubs gets the closest answer. A few terms are going to zero after the substitution.

When I substitute Z(X) then Zbar(X) terms vanish, and visa versa.


Initialize the metric and tetrad

 

restart; with(Physics); with(Tetrads)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1.1)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(1.2)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(1.3)

PDEtools:-declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(1.4)

NULL

vierbien = Matrix([[1, 0, -Ybar(zetabar, zeta, v, u), 0], [0, 1, -Y(zetabar, zeta, v, u), 0], [Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Physics:-`*`(H(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1-Physics:-`*`(Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Ybar(zetabar, zeta, v, u)), H(zetabar, zeta, v, u)], [Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u), -Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1]])

vierbien = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1}))

(1.5)

``

NULL

Setup(tetrad = rhs(vierbien = Matrix(%id = 18446744078408794830)), metric = ds2, mathematicalnotation = true, automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), signature = "+++-")

[automaticsimplification = true, coordinatesystems = {X}, mathematicalnotation = true, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}, signature = `+ + + -`, tetrad = {(1, 1) = 1, (1, 3) = -Ybar(X), (2, 2) = 1, (2, 3) = -Y(X), (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}]

(1.6)

``

Verification of Tetrad

 

I will try to verify the tetrad from (Kerr and Schild (1965)). However, the tetrad given in the paper seems to have the third tetrad with the wrong sign. I changed the sign and get the correct verification,

    e_[]

`&efr;`[a, mu] = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(X), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(X), (2, 4) = 0, (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}))

(2.1)

g_[]

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}))

(2.2)

Physics:-`*`(e_[a, mu], e_[a, nu]) = g_[mu, nu]

Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[`~a`, nu] = Physics:-g_[mu, nu]

(2.3)

TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[`~a`, nu] = Physics:-g_[mu, nu])

Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2 = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2 = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2 = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X) = 2*H(X)})

(2.4)

Physics:-`*`(e_[a, mu], e_[b, mu]) = eta_[a, b]

Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b]

(2.5)

NULL

TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b])

Matrix(4, 4, {(1, 1) = 0 = 0, (1, 2) = 1 = 1, (1, 3) = 0 = 0, (1, 4) = 0 = 0, (2, 1) = 1 = 1, (2, 2) = 0 = 0, (2, 3) = 0 = 0, (2, 4) = 0 = 0, (3, 1) = 0 = 0, (3, 2) = 0 = 0, (3, 3) = 0 = 0, (3, 4) = 1 = 1, (4, 1) = 0 = 0, (4, 2) = 0 = 0, (4, 3) = 1 = 1, (4, 4) = 0 = 0})

(2.6)

``

gamma_[4, 2, 1]

diff(Y(X), zeta)-(diff(Y(X), u))*Ybar(X)

(2.7)

SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(D_[nu](e_[4, mu]), e_[2, mu]), e_[1, `~nu`]))

diff(Y(X), zeta)-(diff(Y(X), u))*Ybar(X)

(2.8)

NULL

``

For equation 2.8 we get the following:

SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Riemann[`~sigma`, rho, mu, nu], e_[4, `~rho`]), e_[4, `~nu`]))

(-Physics:-Riemann[`~sigma`, 4, 4, mu]*Y(X)^2+(Physics:-Riemann[`~sigma`, 4, 1, mu]+Physics:-Riemann[`~sigma`, 1, 4, mu])*Y(X)-Physics:-Riemann[`~sigma`, 1, 1, mu])*Ybar(X)^2+((Physics:-Riemann[`~sigma`, 2, 4, mu]+Physics:-Riemann[`~sigma`, 4, 2, mu])*Y(X)^2+(-Physics:-Riemann[`~sigma`, 2, 1, mu]+Physics:-Riemann[`~sigma`, 3, 4, mu]+Physics:-Riemann[`~sigma`, 4, 3, mu]-Physics:-Riemann[`~sigma`, 1, 2, mu])*Y(X)-Physics:-Riemann[`~sigma`, 3, 1, mu]-Physics:-Riemann[`~sigma`, 1, 3, mu])*Ybar(X)-Physics:-Riemann[`~sigma`, 2, 2, mu]*Y(X)^2+(-Physics:-Riemann[`~sigma`, 2, 3, mu]-Physics:-Riemann[`~sigma`, 3, 2, mu])*Y(X)-Physics:-Riemann[`~sigma`, 3, 3, mu]

(1)

 

Now we replicate eqn 2.16. These are the conditions for e[4,mu] to be geodesic and shear-free. The outputs are eqn 3.5.

 

gamma_[4, 1, 1] = 0

diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0

(2)

gamma_[4, 2, 2] = 0

diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0

(3)

gamma_[1, 4, 4] = 0

(diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0

(4)

gamma_[2, 4, 4] = 0

(diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0

(5)

gamma_[3, 4, 4] = 0

0 = 0

(6)

gamma_[4, 4, 4] = 0

0 = 0

(7)

shearconditions := {diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0, diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0, (diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0, (diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0}:

 

Now we can define the rotation coefficients associated with rotation and expansion z = theta - i omega

 

gamma_[2, 4, 1] = Z(X)

-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X)

(8)

gamma_[1, 4, 2] = Zbar(X)

-(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)

(9)

PDEtools:-declare(Z(X), Zbar(X))

Zbar(zetabar, zeta, v, u)*`will now be displayed as`*Zbar

(10)

Zdefinitions := {-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X), -(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)}

{-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X), -(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)}

(11)

We now show that the tetrad vectors are propogated parallel along each curve of the congruence of null geodesics which have e[4,~mu] as tangents.

 

   

We now use the tetrad form of the Ricci tensor. In order to use this in Maple we need to create a Ricci Tensor Tetrad function.

 

RicciT := proc (a, b) options operator, arrow; SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(12)

SlashD := proc (f, a) options operator, arrow; SumOverRepeatedIndices(D_[b](f)*e_[a, `~b`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[b](f), Physics:-Tetrads:-e_[a, `~b`])) end proc

(13)

SlashD(f(X), 1)

diff(f(X), zeta)-Ybar(X)*(diff(f(X), u))

(14)

SlashD(f(X), 2)

diff(f(X), zetabar)-Y(X)*(diff(f(X), u))

(15)

SlashD(f(X), 3)

(1+H(X)*Y(X)*Ybar(X))*(diff(f(X), u))-H(X)*((diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v))

(16)

SlashD(f(X), 4)

-Y(X)*Ybar(X)*(diff(f(X), u))+(diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v)

(17)

NULL

The geodesic and shear free condition given by Lemma 1 in (Goldberg and Sachs (1962)). Kerr uses the fourth tetrad instead of the third so we need to modify the Ricci tensor conditions. The equations (2) - (5) enforce the first Lemma.

 

   

 

Notice that none of the previous Ricci conditions can be used to solve for H.  We can use the remaining field equations to find the partial differential equations necessary to derive the metric.

 

  simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), u))+2*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v)))*(diff(Y(X), u))*Ybar(X) = 0

(18)

-(diff(H(X), zetabar))*Ybar(X)*Z(X)-Y(X)*(diff(H(X), zeta))*Z(X)-H(X)*(diff(Y(X), zeta))^2+Z(X)*((diff(H(X), u))*Y(X)*Ybar(X)+2*H(X)*Z(X)-(diff(H(X), v))) = 0

-(diff(H(X), zetabar))*Ybar(X)*Z(X)-(diff(H(X), zeta))*Y(X)*Z(X)-H(X)*(diff(Y(X), zeta))^2-Z(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)-2*H(X)*Z(X)+diff(H(X), v)) = 0

(19)

Zbar(X)*(-(diff(H(X), v))-(diff(H(X), zetabar))*Ybar(X)-(diff(H(X), zeta))*Y(X)+(diff(H(X), u))*Y(X)*Ybar(X)+H(X)*(diff(Ybar(X), zetabar)+2*Zbar(X))) = 0

-Zbar(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)-H(X)*(diff(Ybar(X), zetabar))-2*H(X)*Zbar(X)+diff(H(X), v)) = 0

(20)

Physics:-`*`(SlashD(H(X), 4), Z(X)+Zbar(X)) = Physics:-`*`(H(X), SlashD(Z(X), 4)+SlashD(Zbar(X), 4))

-(-(diff(H(X), v))-(diff(H(X), zeta))*Y(X)+Ybar(X)*((diff(H(X), u))*Y(X)-(diff(H(X), zetabar))))*(Z(X)+Zbar(X)) = H(X)*(-Y(X)*Ybar(X)*(diff(Z(X), u))+Ybar(X)*(diff(Z(X), zetabar))+Y(X)*(diff(Z(X), zeta))+diff(Z(X), v)-Y(X)*Ybar(X)*(diff(Zbar(X), u))+Ybar(X)*(diff(Zbar(X), zetabar))+Y(X)*(diff(Zbar(X), zeta))+diff(Zbar(X), v))

(21)

``

NULL

NULL


Download Deriving_the_Kerr_Metric.mw

Hello all,

 

I'm experiencing an aggravating issue when substituting numerical values into a symbolic expression.  I'm using Maple 14.  I believe the issue may be related to floating point precision.  Either way, it's ruining my life.  If anyone has a solution or a work-around, I'd be most grateful.  The following code reproducibly produces the anomolay on my machine:

 

vx := Vector( 4, symbol=x ):

# A numerator and a denominator. They're equal.
num := (x[1]*x[3]+x[1]*x[4]+x[2]*x[3]+x[2]*x[4])^2:
den := ((x[1]+x[2])^2*(x[3]+x[4])^2):

# Prints true...
evalb(num=den);

# This equals zero
y := 0.1 - 0.1*num/den;

# Prints 0...
simplify(y);

# Prints 0...
simplify(subs(x[3]=1,x[4]=3,0.1-0.1*num/den));

# Prints 0...
simplify(subs(x[3]=1,x[4]=3,y));

# Prints 0.1 x 10^-10 !?!?
simplify(subs(x[3]=1,x[4]=2,y));

 

I've got a pair of equations :

x^3-4x=y and y^3-4y=x

 which I've defined as eqns:={,}

and 9 solutions as solns1:={,,..}

and being stored as s1,s2,..s9

when I run a command such as testeq(subs(s1,eqns[1])=subs(s1,eqns[2])

I get an error of passing invalid arguments into testeq. What I essentially need to show is that on substituting for x,y from each s1,..s9; both equations get the same result. What am I doing incorrectly?

I've also noticed that just subs(s1,eqns[1]) returns an equality; I don't quite understand why

Hello,

I have a question: why does the following not work and how can I make it work:

f(x)*a*b;
subs(a*b=y,%);

The result is f(x) a b but I want f(x) y. What can I do? I also tried eval.


Thanks and best regards.

Hi,

I use the VectorCalculus package to calcutate derivative formula for geometric functions, and met difficulity simplifying the result expression.

For example, I define some vectors P, S, V like below:

P:=<Px, Py, Pz>, S:=<Sx, Sy, Sz>, V:=<Vx, Vy, Vz>

then define an intermediate variable Q:=P - S,

then define a function d:= sqrt(DotProduct(Q, Q)-(DotProuct(Q,V))^2)

by calculating the function's derivative w.r.t Px I got a very complex result expression:

dpx:=1/2 * (2Px - 2Sx - 2 ( (Px - Sx) Vx + (Py - Sy) Vy + (Pz - Sz)Vz )Vx ) / (sqrt( (Px-Sx)^2 + (Py-Sy)^2 + (Pz-Sz)^2 - .....)

 

Apparently this expression can be simplified by substituting its sub-expression with pre-defined variables like Q and d.

I know I can use subs, eval, and subsalg to do it manually:

subs(1/(sqrt( (Px-Sx)^2 + (Py-Sy)^2 + (Pz-Sz)^2 - .....) = 1/dv, dfdpx)

subs((Px - Sx) Vx + (Py - Sy) Vy + (Pz - Sz)Vz = dotproduct_q_v, dfdpx)

and I can get a simplified expression like this:

(qx-dotproduct_q_v*vx)/d

 

But it's like my brain does the simplification first, and Maple only does the text substitution for me.

Is there any way to do it automatically?

 

Thanks,

-Kai

 

Given expr:=sin(n*x); and say I want to find its value at n=1,x=Pi/2, I found I can do

subs({n=1,x=Pi/2},expr); eval(%);

or combine into one

eval(subs({n=1,x=Pi/2},expr); ----(1)

But also one can write

eval(expr,{n=1,x=Pi/2}); ----- (2)

So if someone wants to just find value of expression as above, it seems (2) is much simpler than (1) since no need to call subs, it is done automatically. Is there anything else I am overlooking?

Only problem I see in the above, is that subs() uses different order: subs({},expr), while eval is:  eval(expr,{}); The other way around.

It would have been better if the order was the same in the API, to reduce confusion.

 

 

I'm trying to substitute one Differential equation into another differential equation.

 

eq1:=d*n(t)/dt = (rho(t)-beta)*n(t)/Lambda+lambda*C(t)+q

eq2:=diff(eq1, t)

resulting in -> eq2 := d*(diff(n(t), t))/dt = (diff(rho(t), t))*n(t)/Lambda+(rho(t)-beta)*(diff(n(t), t))/Lambda+lambda*(diff(C(t), t))

then I'm given that (diff(C(t), t)) is given by another equation: 

eq3:=d*C(t)/dt = beta*n(t)/Lambda-lambda*C(t)

 

At this point I'm trying to substitute equation 3 into equation 2 for diff(C(t),t)

eq4 := subs(diff(C(t), t) = rhs(eq2), eq5)

 

however no matter what way's I try this I get an error: 

Error, (in simpl/reloprod) invalid terms in product: (d*(diff(n(t), t))/dt = (diff(rho(t), t))*n(t)/Lambda+(rho(t)-beta)*(diff(n(t), t))/Lambda+lambda*(diff(C(t), t)))^-1

 

I then tried to map it but again i got an error specifically about the first parameter: 

Error, invalid operator parameter name

eq5:=map((d/dt C(t))->beta/Lambda*n(t)-lambda*C(t),eq2)

 

I'm just wondering if what I am trying to do is even possible in Maple? 

If anyone can help I would greatly appreciate it! 

Hi all

Assume that we have a function, say f(t) and we want to substitute t in it where t is:

t=[0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

by subs or other better command, how can we do it?

best wishes

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Cause CodeTools:-Test will not eval the paramater:

```
f := x -> x+1;

y := 2;

CodeTools:-Test( f(1), 2); # this will work as normal

CodeTools:-Test( f(1), y); # this will not work because `y` will not eval as 2

```

So current my solution is

```
test := subs(y=2, () -> CodeTools:-Test( f(1), y));

test();

```

 

I don't know is there any more proper solution for this.

More general, is there a way to force evaluate an `uneval` parameter?

 

Hi Everyone,

I have an expression that contains a second order derivative: EXPR:=ay''(x) + bz'(x) + cf'(x)+... The variable y  obeys an ordinary differential equation, y''(x) = f(y,x). I would like to replace the second order deriavtive in my expression with f(y,x). So far I have tried applyrule([y''(x)=f(y,x)],EXPR), subs(y''(x)=f(y,x),EXPR) and algsubs(y''(x)=f(y,x),EXPR) and nothing seems to work. Any helpful suggestions?

 

Hi again,

 

I am lost... again. I worked with the Physics package and have obtained my result in form of a lengthy equation of commutators of non-commuting objects. So basically my problem is solved, except that I now want to compute some examples to see, if everything is correct. For that purpose I want to replace now the non-commuting objects with explicit matrices, compute the result and see if it agrees with numerical studies. However, I have no clue which command to use, because if I try it with subs, then the multiplication is of the wrong type and Maple won't multiply my matrices. I tried to use eval but wasn't successful.

Here is an exampe to see what I mean.

Test2.mw

 

Thank you for your time

 

NOh

1 2 3 4 5 Page 1 of 5