Items tagged with sum

Can somebody please expand the following double sum to produce a list of sequences?

(Sum(f[i], i = 0 .. 1))*(Sum(g[i, j, k], j = 0 .. 1)) for k = {1,2}

I need to make sure the operation order is correct, so I would like to verify my workings.

Thanks!

Hello.

I have a Pde solution in from of the sum.

pde := diff(u(x, t), t) = diff(u(x, t), x$2)

symbolic := pdsolve([pde, u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0])

symbolic := u(x, t) = Sum(-(2*((-1)^_Z9-1))*sin(_Z9*Pi*x)*exp(-Pi^2*_Z9^2*t)/(Pi*_Z9), _Z9 = 1 .. infinity)

 

I tried a subs or eval command dosen't work.

 

Thanks.

pdex1.mw
 

restart

pde := diff(u(x, t), t) = diff(u(x, t), `$`(x, 2)):

ics := [u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0]:

pds := pdsolve(pde, ics, numeric, time = t, range = 0 .. 1, spacestep = 1/4024, timestep = 1/4024):

symbolic := pdsolve([pde, u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0])

u(x, t) = Sum(-2*((-1)^_Z9-1)*sin(_Z9*Pi*x)*exp(-Pi^2*_Z9^2*t)/(Pi*_Z9), _Z9 = 1 .. infinity)

(1)

eval(rhs(symbolic), `~`[_Z9] = n)

Sum(-2*((-1)^_Z9-1)*sin(_Z9*Pi*x)*exp(-Pi^2*_Z9^2*t)/(Pi*_Z9), _Z9 = 1 .. infinity)

(2)

subs(`~`[_Z9] = n, rhs(symbolic))

Sum(-2*((-1)^_Z9-1)*sin(_Z9*Pi*x)*exp(-Pi^2*_Z9^2*t)/(Pi*_Z9), _Z9 = 1 .. infinity)

(3)

subs[eval](`~`[_Z9] = n, rhs(symbolic))

Sum(-2*((-1)^_Z9-1)*sin(_Z9*Pi*x)*exp(-Pi^2*_Z9^2*t)/(Pi*_Z9), _Z9 = 1 .. infinity)

(4)

``


 

Download pdex1.mw

 

I am having issues with Maple 2016 computing closed form solutions using the sum command. For example, sum((-1)^n, n = 1 .. infinity) evaluates to -1/2 in the help topic, however, when I run the command in a maple document, this result is not obtained. It instead returns sum((-1)^n, n = 1 .. infinity). Likewise, sum( a*r^k, k = 0..infinity) doesn't evaluate to -a/(r-1). How can I get Maple to determine closed form solutions for power series?

i wrote this problem to solve 

Delta= Sum(j=1 to n)SUM(i=j to n)(pi*hj/Ad(t,ij)*Et,ij))

Where n=70,  G= ftj (t)/(4+0.85*t) , where (t =8, 16, 24,…….up to 8*n), hj= 13 for all j except j1 =18

Ad= (Aj+s(mij-1)), where Aj varies

Mij=ES/E(G),          where E(G)= 57sqrt(1000*G)

 

n := 70;

70

(1)

i := seq(1 .. n, 1);

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70

(2)

t := proc (i) options operator, arrow; 8*i end proc;

proc (i) options operator, arrow; 8*i end proc

(3)

j := i;

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70

(4)

F = f(j);

F = f(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70)

(5)

F(1 .. 30) := 8;

8

(6)

F(31 .. 40) := 7;

7

(7)

F(41 .. 70) := 6;

6

(8)

G := proc (F, i) options operator, arrow; F*t/(4+.85*t) end proc;

proc (F, i) options operator, arrow; F*t/(4+.85*t) end proc

(9)

A := f(j);

f(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70)

(10)

A(1 .. 30) := 5184;

5184

(11)

A(31 .. 50) := 3600;

3600

(12)

A(51 .. 62) := 1936;

1936

(13)

A(63 .. 70) := 1024;

1024

(14)

s := f(j);

proc () option remember; table( [( 31 .. 50 ) = 3600, ( 63 .. 70 ) = 1024, ( 1 .. 30 ) = 5184, ( 51 .. 62 ) = 1936, ( 31 .. 40 ) = 3600 ] ) 'procname(args)' end proc

(15)

s(1 .. 10) := 128.0448;

128.0448

(16)

s(11 .. 20) := 63.763;

63.763

(17)

s(21 .. 30) := 79.92;

79.92

(18)

s(31 .. 40) := 64.08;

64.08

(19)

s(41 .. 50) := 47.88:

s(51 .. 62) := 31.944;

31.944

(20)

s(63 .. 70) := 12.49;

12.49

(21)

E := proc (G) options operator, arrow; 57*sqrt(1000*F) end proc;

proc (G) options operator, arrow; 57*sqrt(1000*F) end proc

(22)

Es := 29000;

29000

(23)

m := proc (E) options operator, arrow; Es/E(G) end proc;

proc (E) options operator, arrow; Es/E(G) end proc

(24)

Ad := proc (j, m) options operator, arrow; A+s*(m(E)-1) end proc;

proc (j, m) options operator, arrow; A+s*(m(E)-1) end proc

(25)

P := f(j);

proc () option remember; table( [( 21 .. 30 ) = 79.92, ( 31 .. 50 ) = 3600, ( 41 .. 50 ) = 47.88, ( 63 .. 70 ) = 12.49, ( 1 .. 30 ) = 5184, ( 51 .. 62 ) = 31.944, ( 11 .. 20 ) = 63.763, ( 31 .. 40 ) = 64.08, ( 1 .. 10 ) = 128.0448 ] ) 'procname(args)' end proc

(26)

P(1 .. 68) := 254.7;

254.7

(27)

P(69 .. 70) := 196.8;

196.8

(28)

h := f(j);

proc () option remember; table( [( 21 .. 30 ) = 79.92, ( 31 .. 50 ) = 3600, ( 41 .. 50 ) = 47.88, ( 63 .. 70 ) = 12.49, ( 1 .. 30 ) = 5184, ( 51 .. 62 ) = 31.944, ( 11 .. 20 ) = 63.763, ( 31 .. 40 ) = 64.08, ( 1 .. 10 ) = 128.0448 ] ) 'procname(args)' end proc

(29)

h(1) := 18;

18

(30)

h(2 .. 70) = 13;

h(2 .. 70) = 13

(31)

delta := sum(sum((P.h)/(E(G)*Ad)), i = 1 .. n, j = i)

Error, invalid input: sum uses a 2nd argument, k, which is missing

 

``


 

Download short.mw

f=sum((2*q*cos(2* i*x)*(-1)^(i)*(-1)^((2*i-1)))/(i*Pi),i=1.3.5...35)

I want to write this series but getting error

the result is

2*q*cos(2*x)/Pi-2*cos(6*x)*q/(3*Pi)+2*q*cos(10*x)/(5*Pi)-2*q*cos(14*x)/(7*Pi)+2*q*cos(18*x)/(9*Pi)-2*q*cos(22*x)/(11*Pi)+2*q*cos(26*x)/(13*Pi)-2*q*cos(30*x)/(15*Pi)+2*q*cos(34*x)/(17*Pi)-2*q*cos(38*x)/(19*Pi)+2*q*cos(42*x)/(21*Pi)-2*q*cos(46*x)/(23*Pi)+2*q*cos(50*x)/(25*Pi)-2*q*cos(54*x)/(27*Pi)+2*q*cos(58*x)/(29*Pi)-2*q*cos(62*x)/(31*Pi)+2*q*cos(66*x)/(33*Pi)-2*q*cos(70*x)/(35*Pi)

can anybody help 

Hello, I need help in add/sum, there are two problems:

 

1. How we write triple summation (sigma) in Maple? (See pic)

Pic 1 (Triple Sigma)

I try sum(sum(sum or add(add(add but it isn't working.

 

 

2. How we write summation like in this pic?

Pic 2

I already try these syntax:

for e from 1 to 9 do

for k from 1 to 17 do

if i=(2*e-1) then next else

constraint12[2*e-1,k]:=add(x[2*e-1,i,k],i from i in T)=1

end if

end do

end do

 

For example, the expected result for e=2 and k=1 is like following equation:

x[2,1,1]+x[2,3,1]+x[2,4,1]+x[2,5,1]+...+x[2,17,1]+x[2,18,1]=1

But the result I get:

x[2,1,1]+x[2,2,1]+x[2,3,1]+...+x[2,18,1]=1

 

How to omit the x[2,2,1]?

 

Thank you.

Hi! I'm trying to find the way to plot the solution with series representation. I need some help to find the easiest way.

Note: I realized some typing errors, which do not change the question a lot ,and I corrected them.

plot.mw

 

 

 

 

Can we calculate the following equations in Maple?

Substituting equations (21) and (22) into (17), and then obtain equation (23). How to do that? I have done this, but the results are complex and large. They are not in a sum form, but in an expansion form. The reference and the maple file are attached.

Hope for your help.

Best wishes,

Kang

Dynamic_buckling_of_thin_isotropic_plates_subjected_to_in-plane_impact.pdf

gg.mw

Hello,how can i find the lambda in this equation? and x=0..2 , t=0..2

Dear all

 

I have a confusion between these symbol

Sum , add and sum

If we consider u(n) is a sequence and n integer

and what is the difference between 

sum( u(n),n=0..infinity)

Sum(u(n),n=0..infinity)

and sum('u(n)', n=0..infinity)

Many thanks

Hello

Any idea about the summation of Fibonacci sequence

 

Fibonacci.mw

 

Best regards

 

Hello everybody.

I have a function:

f(x,y)=GAMMA(y, -ln(x))/GAMMA(y)

seq(sum(f(x, y), y = 0 .. 1), x = 0 .. 5)

 

and I got a error message:

Error, (in ln) numeric exception: division by zero ??
This is normal behavior in seq function or Bug?

 

but  when I'm first calculate the sum sol := sum(f(x, y), y = 0 .. 1) -> x,

and evalf([seq(sol, x = 0 .. 5)]) ->[0., 1., 2., 3., 4., 5.] works fine.

 

Seq-division_by_zero.mw

Mariusz Iwaniuk

Dear all

 

If its possible in  Maple to change the integral of the sum to  the sum of integrals when I calucle the integral of a function series

 

Thank you

Hello guys,

I was just playing around with the Shanks transformation of a power series, when I noticed that polynomials aren't evaluated as I would expect.
I created this minimal working example; the function s should evaluate for z=0 to a[0], however it return simply 0.
Is there something I messed up?

restart

s := proc (n, z) options operator, arrow; sum(a[k]*z^k, k = 0 .. n) end proc;

proc (n, z) options operator, arrow; sum(a[k]*z^k, k = 0 .. n) end proc

(1)

series(s(n, z), z = 0)

series(a[0]+a[1]*z+a[2]*z^2+a[3]*z^3+a[4]*z^4+a[5]*z^5+O(z^6),z,6)

(2)

The value of s in z=0 should be a[0], however it returns 0:

s(n, 0)

0

(3)

s(1, 0)

0

(4)

Download evaluate_sum.mw

 

Thanks for your help,

Sören

Please check this:

N:=3;

sum1 := lcm(N, 0)+lcm(N, 1)+lcm(N, 2)+lcm(N, 3);

sum2 := sum(lcm(N, k), k = 0 .. N);

 

Why is sum2 wrong?

 

Regards,

César Lozada

 

1 2 3 4 5 6 7 Last Page 1 of 13