Items tagged with syntax syntax Tagged Items Feed

Iam a newbie, just two weeks into my 30-days trial. I have been exploring the symmetry aspect of PDEtools, gone through materials in the help section but still having problem in some of my analysis. The answer to the titled question "Symmetry analysis with parameters" was really helpful but did not work out for me when the parameters are more than one. Attached is a sample question.






i write this set of differential equation in maple and get the following error?

Can anyon help me with this?





I've got this huge chunk of code which leads to an optimiazation at the very last line (Bestangles:=minimize(maximize()-minimize))). This minization is taking a very long time (havent solved it yet) and I would very much like to reduce that time. As I've understood maple does optimization by differentiating and then finding all extremes and comparing. Would this mean that since I minimize and optimize within a minimization command, it differentiates a ton of times? And if this is the case, can I somehow do the differentiation beforehand, since it is the same function being differentiate all the time? Or is there some other way I can improve the code? 
Thanks alot!

Heres the full code:

So I am trying to apply the Optimization function to a rather complicated problem I am currently working on, and having some trouble getting maple to cooporate. This is the part of the code that is giving me the error, with error included. All of the variables imputtet when calling OptimizeSpring are constants. If there is any other details I should add, please say so and I will add them promptly :) Thanks alot!
Maple problem

I suspect that it might be related to this suggestion, but I am not sure how to apply it

I would like to plot the following singular double integral, but I cannot due to singularities...


where x>0, t=0.2 and m=0.2.

I defined f(y) function as f:=y->exp(-(y-4.68)^2/0.4):

I attached my file:

Thank you !

There is an error in my implementation as follow:

"Error, (in unknown) incorrect syntax in parse: `*` unexpected (near 1st character of parsed string)"

What I have to do to remove this error?

Tried different ways to apply unapply but failed:

a := .1994;

modfit3 := a*x^1.5;
f := unapply(rhs(modfit3), x);
Error, invalid input: rhs received .1994*x^1.5, which is not valid for its 1st argument, expr

What's wrong here?




I'm having some issues with this procedure it seems to take a very long time to evaluate. There is also an error in the Histogram I can't seem to fix... Does anybody know why? Any help would be greatly appreciated! Thank you in advance!

Kind regards,

Gambia man

Hello I am trying to plot this differential equation,  have not had any success can any one help me.

plot(q(t)= Ce^-1/2 + sin2t +cos4t)

not sure what i am doing wrong and i just used the plot command


after following a example , got error


               1   / d      \    1        2     2
               - m |--- x(t)|  - - m omega  x(t)
               2   \ dt     /    2              
Error, (in Mechanics:-LagrangeEqs) invalid input: subs received subst1, which is not valid for its 1st argument
Error, invalid input: Mechanics:-GeneralSol expects its 1st argument, eqs, to be of type list, but received eqs
Error, invalid input: rhs received sol, which is not valid for its 1st argument, expr


Mechanics := module()
export SetVariables, LagrangeEqs, GeneralSol;
option package;
local subst1, subst2, varN, t;

SetVariables = proc( vars:: list, time )
local i;
t := time;
varN := nops( vars );
subst1 := {};
subst2 := {};
for i from 1 to var N do
subst1 := subst1 union
{vars[i](t) = q[i], diff(vars[i](t), t) = v[i]};
subst2 := subst2 union
{q[i] = vars[i](t), v[i] = diff(vars[i](t), t)};
end do;
print( subst1 );
print( subst2 );
end proc;

LagrangeEqs := proc (L)
local i, l1, term1, term2;
l1 := subs(subst1, L):
for i to varN do
term1 := [seq(diff(subs(subst2, diff(l1, v[i])), t), i = 1..varN)]:
term2 := [seq(subs(subst2, diff(l1, q[i])), i = 1..varN)]:
end do;
[ seq(simplify(term1[i]-term2[i]) = 0, i = 1..varN) ];
end proc;

RayleighEqs := proc(L, R)
local i, l1, r1, term1, term2, term3;
l1 := subs( subst1, L ):
r1 := subs( subst1, R ):
for i from 1 to varN do
term1:=[seq(diff(subs(subst2, diff(l1, v[i])), t), i=1..varN)]:
term2:=[seq(subs(subst2, diff(l1, q[i])), i=1..varN)]:
term3:=[seq(subs(subst2, diff(r1, v[i])), i=1..varN)]:
end do:
[ seq(simplify(term1[i]-term2[i]+term3[i]), i=1..varN) ];
end proc;

LagrEqsII := proc( L, Q::list )
local i, l1, term1, term2;
l1 := subs(subst1, L):
for i to varN do
term1 := [seq(diff(subs(subst2, diff(l1, v[i])), t), i = 1 .. varN)]:
term2 := [seq(subs(subst2, diff(l1, q[i])), i = 1 .. varN)]:
end do;
[seq(simplify(term1[i]-term2[i]) = Q[i], i = 1 .. varN)];
end proc;

LagrEqsIII := proc (L, R, Q::list)
local i, l1, r1, term1, term2, term3;
l1 := subs(subst1, L):
r1 := subs(subst1, R):
for i to varN do
term1 := [seq(diff(subs(subst2, diff(l1, v[i])), t), i = 1 .. varN)]:
term2 := [seq(subs(subst2, diff(l1, q[i])), i = 1 .. varN)]:
term3 := [seq(subs(subst2, diff(r1, v[i])), i = 1 .. varN)]:
end do;
[seq(simplify(term1[i]-term2[i]+term3[i]) = Q[i], i = 1 .. varN)];
end proc;

GeneralSol := proc (eqs::list)
local i, initconds, eqs2;
initconds := NULL:
eqs2 := eqs[][]:
for i to varN do
initconds:=VarNames[i](0)=q[i], (D(VarNames[i]))(0)=v[i], initconds:
end do;
dsolve({initconds, eqs2});
end proc;

end module;

LibLocation := cat("c:\\Temp");
Save(Mechanics, LibLocation);
save(Mechanics, "c:\\Temp\\Mechanics.m");
read "c:\\Temp\\Mechanics.m";


SetVariables([x], t);
L := (1/2)*m*diff(x(t), t)^2 - (1/2)*m*omega^2 * x(t)^2;
eqs := LagrangeEqs(L);
sol := GeneralSol( eqs );
X := unapply( rhs(sol), t );




When I input an expression such as 3*(2*x-1)(x+1) > 0 into a Maple worksheet, Maple outputs this:

0 < 6*x(x+1)-3

(sorry, the formatter doesn't work for some reason).

I was wondering by which rules Maple determines to output that instead of, for example,

0 < 3(2*x^2+x-1)


0 < 6*x^2+3x-3


Also, Maple can't seem to be able to solve the inequality. It gives the following error to the command:

solve( { 3*(2*x-1)(1+x) > 0 } );

Error, (in solve) cannot solve for an unknown function with other operations in its arguments


So, I was wondering, is there a way to force Maple to output either in the most factorized form (which should be what I gave it as input) or in the least factorized form (that is, multiply it all)?

And, of course, why can't I solve the inequality with Maple?

i have to compute lie algebra condition by using maple 15, but currently i have code in maple 5.,

i already try to run in maple 15 but it say 'error,unable to match delimeters'
i try to find error, but i cant find it..
the coding are here...


local  i,j,k,l,m;  

for i from 1 by 1 to n do

for j from 1 by 1 to n do  

for k  from 1 by 1 to n do    

if A[i,i,k]<>0 then  

RETURN ('Input is NOT a Lie algebra (',i,i,k,')=',A[i,i,k], 'is not zero');  

elif A[i,j,k]+A[j,i,k]<>0 then  

RETURN ('Input is NOT a Lie algebra,(',i,j,k,')+(',j,i,k,')=',A[i,j,k]+A[j,i,k],'is not zero');  


for 1 from 1 by 1 to n do


simplify(sum(A[i,j,m]*A[m,l,k]+A[j,l,m]*A[m,i,k]+A[l,i,m]*A[m,j,k],   m=1..n))<>0  


RETURN('Input is NOT a Lie algebra---the Jac(',i,j,l,') is not zero');    







print('Yes,input IS a Lie algebra');  


can anyone help me here? Thank You..

Here, i attached the result in printscreen

Hi all,

I have this system

> system1D := H = alpha*gamma[2, 2]*d[2, 1]-beta*d[1, 2]*gamma[1, 2]^2-gamma*d[1, 2]*gamma[2, 1]^2+alpha*gamma[2, 2]^2*d[2, 2]-beta*d[2, 2]*gamma[2, 2]^2-gamma*d[2, 2]*gamma[2, 2]^2, E = alpha*gamma[2, 1]*d[1, 1]-beta*d[1, 2]*gamma[1, 1]-gamma*d[1, 1]*gamma[2, 1]+alpha*gamma[2, 1]^2*d[1, 2]-beta*d[2, 2]*gamma[2, 1]-gamma*d[2, 1]*gamma[2, 2], B = alpha*gamma[1, 1]*d[2, 1]-beta*d[1, 1]*gamma[1, 1]^2-gamma*d[1, 1]*gamma[1, 1]^2+alpha*gamma[1, 1]^2*d[2, 2]-beta*d[2, 1]*gamma[2, 1]^2-gamma*d[2, 1]*gamma[1, 2]^2, D = alpha*gamma[1, 2]*d[2, 1]-beta*d[1, 1]*gamma[1, 2]^2-gamma*d[1, 2]*gamma[1, 1]^2+alpha*gamma[1, 2]^2*d[2, 2]-beta*d[2, 1]*gamma[2, 2]^2-gamma*d[2, 2]*gamma[1, 2]^2, A = alpha*gamma[1, 1]*d[1, 1]-beta*d[1, 1]*gamma[1, 1]-gamma*d[1, 1]*gamma[1, 1]+alpha*gamma[1, 1]^2*d[1, 2]-beta*d[2, 1]*gamma[2, 1]-gamma*d[2, 1]*gamma[1, 2], C = alpha*gamma[1, 2]*d[1, 1]-beta*d[1, 1]*gamma[1, 2]-gamma*d[1, 2]*gamma[1, 1]+alpha*gamma[1, 2]^2*d[1, 2]-beta*d[2, 1]*gamma[2, 2]-gamma*d[2, 2]*gamma[1, 2], F = alpha*gamma[2, 1]*d[2, 1]-beta*d[1, 2]*gamma[1, 1]^2-gamma*d[1, 1]*gamma[2, 1]^2+alpha*gamma[2, 1]^2*d[2, 2]-beta*d[2, 2]*gamma[2, 1]^2-gamma*d[2, 1]*gamma[2, 2]^2, G = alpha*gamma[2, 2]*d[1, 1]-beta*d[1, 2]*gamma[1, 2]-gamma*d[1, 2]*gamma[2, 1]+alpha*gamma[2, 2]^2*d[1, 2]-beta*d[2, 2]*gamma[2, 2]-gamma*d[2, 2]*gamma[2, 2], H = alpha*delta[2, 2]*d[2, 1]-beta*d[1, 2]*delta[1, 2]^2-gamma*d[1, 2]*delta[2, 1]^2+alpha*delta[2, 2]^2*d[2, 2]-beta*d[2, 2]*delta[2, 2]^2-gamma*d[2, 2]*delta[2, 2]^2, E = alpha*delta[2, 1]*d[1, 1]-beta*d[1, 2]*delta[1, 1]-gamma*d[1, 1]*delta[2, 1]+alpha*delta[2, 1]^2*d[1, 2]-beta*d[2, 2]*delta[2, 1]-gamma*d[2, 1]*delta[2, 2], B = alpha*delta[1, 1]*d[2, 1]-beta*d[1, 1]*delta[1, 1]^2-gamma*d[1, 1]*delta[1, 1]^2+alpha*delta[1, 1]^2*d[2, 2]-beta*d[2, 1]*delta[2, 1]^2-gamma*d[2, 1]*delta[1, 2]^2, D = alpha*delta[1, 2]*d[2, 1]-beta*d[1, 1]*delta[1, 2]^2-gamma*d[1, 2]*delta[1, 1]^2+alpha*delta[1, 2]^2*d[2, 2]-beta*d[2, 1]*delta[2, 2]^2-gamma*d[2, 2]*delta[1, 2]^2, A = alpha*delta[1, 1]*d[1, 1]-beta*d[1, 1]*delta[1, 1]-gamma*d[1, 1]*delta[1, 1]+alpha*delta[1, 1]^2*d[1, 2]-beta*d[2, 1]*delta[2, 1]-gamma*d[2, 1]*delta[1, 2], C = alpha*delta[1, 2]*d[1, 1]-beta*d[1, 1]*delta[1, 2]-gamma*d[1, 2]*delta[1, 1]+alpha*delta[1, 2]^2*d[1, 2]-beta*d[2, 1]*delta[2, 2]-gamma*d[2, 2]*delta[1, 2], F = alpha*delta[2, 1]*d[2, 1]-beta*d[1, 2]*delta[1, 1]^2-gamma*d[1, 1]*delta[2, 1]^2+alpha*delta[2, 1]^2*d[2, 2]-beta*d[2, 2]*delta[2, 1]^2-gamma*d[2, 1]*delta[2, 2]^2, G = alpha*delta[2, 2]*d[1, 1]-beta*d[1, 2]*delta[1, 2]-gamma*d[1, 2]*delta[2, 1]+alpha*delta[2, 2]^2*d[1, 2]-beta*d[2, 2]*delta[2, 2]-gamma*d[2, 2]*delta[2, 2];

> subs({A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0, delta[1, 1] = 1, delta[1, 2] = 0, delta[2, 1] = 0, delta[2, 2] = 0, gamma[1, 1] = 1, gamma[1, 2] = 0, gamma[2, 1] = 0, gamma[2, 2] = 0, delta[1, 1]^2 = 0, delta[1, 2]^2 = 0, delta[2, 1]^2 = 1, delta[2, 2]^2 = 0, gamma[1, 1]^2 = 0, gamma[1, 2]^2 = 1, gamma[2, 1]^2 = 0, gamma[2, 2]^2 = 0}, {system1D});

The problem is: there is any simple way to use command "subs" when some expression such that delta[1,1]=1, gamma[1,1]=1, gamma[1,2]^2=1 have value and others are zero.

Can someone please advice and help me on this?



Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

For the life of me I can not get maple to plot this equation.  I have poured over various resources and it simply isn't working.  I have gone so far as to use SIMPLIFY and even  Re(circuitSix) and Im(circuitSix) yet still get only errors.  Any insight would be appreciated.


when i weite this expression

diff(1/(6*t+1)+x(12*t+1)/(6*t+1)^2, t)

then it give an ans


i want to solve it completly,but it give another darivative D(x) which is inside of the the equation.

how can i solve this D(x)


1 2 3 4 5 6 Page 1 of 6